
CSE 331
Software Design & Implementation

Hal Perkins
Autumn 2012

Design Patterns I
(Slides by Mike Ernst and David Notkin)

1

Outline

•  Introduction to design patterns
•  Creational patterns (constructing objects)
•  Structural patterns (controlling heap layout)
•  Behavioral patterns (affecting object semantics)

2

What is a design pattern?

•  A standard solution to a common programming problem
–  a design or implementation structure that achieves a

particular purpose
–  a high-level programming idiom

•  A technique for making code more flexible
–  reduce coupling among program components

•  Shorthand for describing program design
–  a description of connections among program

components (static structure)
–  the shape of a heap snapshot or object model

(dynamic structure)

A few simple examples….

3

Example 1: Encapsulation (data hiding)

•  Problem: Exposed fields can be directly manipulated
–  Violations of the representation invariant
–  Dependences prevent changing the

implementation
•  Solution: Hide some components

–  Permit only stylized access to the object
•  Disadvantages:

–  Interface may not (efficiently) provide all desired
operations

–  Indirection may reduce performance

4

Example 2: Subclassing (inheritance)

•  Problem: Repetition in implementations
–  Similar abstractions have similar components

(fields, methods)
•  Solution: Inherit default members from a superclass

–  Select an implementation via run-time dispatching
•  Disadvantages:

–  Code for a class is spread out, and thus less
understandable

–  Run-time dispatching introduces overhead

5

Example 3: Iteration

•  Problem: To access all members of a collection, must
perform a specialized traversal for each data structure
–  Introduces undesirable dependences
–  Does not generalize to other collections

•  Solution:
–  The implementation performs traversals, does

bookkeeping
•  The implementation has knowledge about the

representation
–  Results are communicated to clients via a standard

interface (e.g., hasNext(), next())
•  Disadvantages:

–  Iteration order is fixed by the implementation and not
under the control of the client

6

Example 4: Exceptions

•  Problem:
–  Errors in one part of the code should be handled

elsewhere.
–  Code should not be cluttered with error-handling code.
–  Return values should not be preempted by error codes.

•  Solution: Language structures for throwing and catching
exceptions

•  Disadvantages:
–  Code may still be cluttered.
–  It may be hard to know where an exception will be

handled.
–  Use of exceptions for normal control flow may be

confusing and inefficient.

7

Example 5: Generics

•  Problem:
–  Well-designed data structures hold one type of

object
•  Solution:

–  Programming language checks for errors in
contents

–  List<Date> instead of just List
•  Disadvantages:

–  More verbose types

8

Why design patterns?

•  Advanced programming languages like Java provide
lots of powerful constructs – subtyping, interfaces,
rich types and libraries, etc.

•  By the nature of programming languages, they can’t
make everything easy to solve

•  To the first order, design patterns are intended to
overcome common problems that arise in even
advanced object-oriented programming languages

•  They increase your vocabulary and your intellectual
toolset

9

When (not) to use design patterns

•  Rule 1: delay
–  Get something basic working first
–  Improve it once you understand it

•  Design patterns can increase or decrease
understandability
–  Add indirection, increase code size
–  Improve modularity, separate concerns, ease

description
•  If your design or implementation has a problem,

consider design patterns that address that problem

10

Why should you care?

•  You could come up with these solutions on your own
–  You shouldn't have to!

•  A design pattern is a known solution to a known
problem

11

Whence design patterns?

•  The Gang of Four (GoF) – Gamma,
Helm, Johnson, Vlissides

•  Each an aggressive and thoughtful
programmer

•  Empiricists, not theoreticians
•  Found they shared a number of “tricks” and

decided to codify them – a key rule was that
nothing could become a pattern unless they
could identify at least three real examples

12

Patterns vs. patterns

•  The phrase “pattern” has been wildly overused since the
GoF patterns have been introduced

•  “pattern” has become a synonym for “[somebody says] X
is a good way to write programs.”
–  And “anti-pattern” has become a synonym for

“[somebody says] Y is a bad way to write programs.”
•  A graduate student recently studied so-called “security

patterns” and found that very few of them were really GoF-
style patterns

•  GoF-style patterns have richness, history, language-
independence, documentation and thus (most likely) far
more staying power

13

An example of a GoF pattern

•  Given a class C, what if you want to guarantee that
there is precisely one instance of C in your program?
And you want that instance globally available?

•  First, why might you want this?
•  Second, how might you achieve this?

14

Possible reasons for Singleton

•  One RandomNumber generator
•  One graph model object
•  One KeyboardReader, etc…
•  Make it easier to ensure some key invariants
•  Make it easier to control when that single instance is

created – can be important for large objects
•  …

15

public class Singleton {
 private static final Singleton instance
 = new Singleton(); // Private constructor prevents
 // instantiation from other classes
 private Singleton() { }
 public static Singleton getInstance() {
 return instance;
 }
}

Several solutions

public class Singleton {
 private static Singleton instance;
 private Singleton() { }
 public static synchronized Singleton getInstance() {
 if (instance == null) {
 instance = new Singleton();
 }
 return instance;
 }
}

Eager allocation
of instance

Lazy allocation
of instance

GoF patterns: three categories

•  Creational Patterns – these abstract the object-
instantiation process
–  Factory Method, Abstract Factory, Singleton, Builder,

Prototype, …
•  Structural Patterns – these abstract how objects/classes

can be combined
–  Adapter, Bridge, Composite, Decorator, Façade,

Flyweight, Proxy, …
•  Behavioral Patterns – these abstract communication

between objects
–  Command, Interpreter, Iterator, Mediator, Observer,

State, Strategy, Chain of Responsibility, Visitor,
Template Method, …

•  Blue = ones we’ve seen already
17

Creational patterns

•  Constructors in Java are inflexible
–  Can't return a subtype of the class they belong to
–  Always return a fresh new object, never re-use one

•  Problem: client desires control over object creation
•  Factory method

–  Hides decisions about object creation
–  Implementation: put code in methods in client

•  Factory object
–  Bundles factory methods for a family of types
–  Implementation: put code in a separate object

•  Prototype
–  Every object is a factory, can create more objects like

itself
–  Implementation: put code in clone methods

18

Motivation for factories:
Changing implementations

•  Supertypes support multiple implementations
–  interface Matrix { ... }
–  class SparseMatrix implements Matrix { ... }
–  class DenseMatrix implements Matrix { ... }

•  Clients use the supertype (Matrix)
–  Still need to use a SparseMatrix or
DenseMatrix constructor

–  Switching implementations requires code changes

19

Use of factories

•  Factory
class MatrixFactory {
 public static Matrix createMatrix() {
 return new SparseMatrix();
 }
}

•  Clients call createMatrix, not a particular constructor
•  Advantages

–  To switch the implementation, only change one place
–  Can decide what type of matrix to create

20

Example: bicycle race

class Race {

 // factory method for bicycle race
 Race createRace() {
 Bicycle bike1 = new Bicycle();
 Bicycle bike2 = new Bicycle();
 ...
 }

}

21

Example: Tour de France

class TourDeFrance extends Race {

 // factory method
 Race createRace() {
 Bicycle bike1 = new RoadBicycle();
 Bicycle bike2 = new RoadBicycle();
 ...
 }

}

22

Example: Cyclocross

class Cyclocross extends Race {

 // factory method
 Race createRace() {
 Bicycle bike1 = new MountainBicycle();
 Bicycle bike2 = new MountainBicycle();
 ...
 }

}

23

Factory method for Bicycle

class Race {
 Bicycle createBicycle() { ... }
 Race createRace() {
 Bicycle bike1 = createBicycle();
 Bicycle bike2 = createBicycle();
 ...
 }
}

•  Use a factory method to avoid dependence on

specific new kind of bicycle in createRace()

24

Code using Bicycle factory methods
class Race {
 Bicycle createBicycle() { ... }
 Race createRace() {
 Bicycle bike1 = createBicycle();
 Bicycle bike2 = createBicycle();
 ...
 }
}

class TourDeFrance extends Race {
 Bicycle createBicycle() {
 return new RoadBicycle();
 }
}

class Cyclocross extends Race {
 Bicycle createBicycle(Frame) {
 return new MountainBicycle();
 }
}

25

Factory objects/classes
encapsulate factory methods

class BicycleFactory {
 Bicycle createBicycle() { ... }
 Frame createFrame() { ... }
 Wheel createWheel() { ... }
 ...
}

class RoadBicycleFactory extends BicycleFactory {
 Bicycle createBicycle() {
 return new RoadBicycle();
 }
}

class MountainBicycleFactory extends BicycleFactory {
 Bicycle createBicycle() {
 return new MountainBicycle();
 }
}

26

Using a factory object
class Race {
 BicycleFactory bfactory;
 // constructor
 Race() { bfactory = new BicycleFactory(); }
 Race createRace() {
 Bicycle bike1 = bfactory.createBicycle();
 Bicycle bike2 = bfactory.createBicycle();
 ...
 }
}

class TourDeFrance extends Race {
 // constructor
 TourDeFrance() { bfactory = new RoadBicycleFactory(); }
}

class Cyclocross extends Race {
 // constructor
 Cyclocross() { bfactory = new MountainBicycleFactory(); }
}

27

Separate control over bicycles and races

class Race {
 BicycleFactory bfactory;
 // constructor
 Race(BicycleFactory bfactory)
 { this.bfactory = bfactory; }

 Race createRace() {
 Bicycle bike1 = bfactory.completeBicycle();
 Bicycle bike2 = bfactory.completeBicycle();
 ...
 }
}
// No special constructor for TourDeFrance or
// for Cyclocross

 Now we can specify the race and the bicycle separately:

 new TourDeFrance(new TricycleFactory())

28

DateFormat factory methods

DateFormat class encapsulates knowledge about how to format
dates and times as text
–  Options: just date? just time? date+time? where in the world?
–  Instead of passing all options to constructor, use factories.
–  The subtype created doesn't need to be specified.

DateFormat df1 = DateFormat.getDateInstance();

DateFormat df2 = DateFormat.getTimeInstance();

DateFormat df3 = DateFormat.getDateInstance(DateFormat.FULL,
Locale.FRANCE);

Date today = new Date();

System.out.println(df1.format(today)); // “Jul 4, 1776"

System.out.println(df2.format(today)); // "10:15:00 AM"

System.out.println(df3.format(today)); // “juedi 4 juillet 1776"

29

Prototype pattern

•  Every object is itself a factory
•  Each class contains a clone method that creates a copy

of the receiver object

class Bicyle {
 Bicycle clone() { ... }
}

•  Often, Object is the return type of clone
–  clone is declared in Object
–  Design flaw in Java 1.4 and earlier: the return type

may not change covariantly in an overridden method
•  i.e., return type could not be made more restrictive
•  This is a problem for achieving true subtyping

30

Using prototypes

class Race {
 Bicycle bproto;
 // constructor
 Race(Bicycle bproto) { this.bproto = bproto; }
 Race createRace() {
 Bicycle bike1 = (Bicycle) bproto.clone();
 Bicycle bike2 = (Bicycle) bproto.clone();
 ...
 }
}

Again, we can specify the race and the bicycle separately:

new TourDeFrance(new Tricycle())

31

Dependency injection
Change the factory without changing the code

With a regular in-code factory:

 BicycleFactory f = new TricycleFactory();
 Race r = new TourDeFrance(f)

With external dependency injection:

 BicycleFactory f
 = ((BicycleFactory)
 DependencyManager.get("BicycleFactory"));
 Race r = new TourDeFrance(f);

plus an external file:
<service-point id=“BicycleFactory">
 <invoke-factory>
 <construct class=“Bicycle">
 <service>Tricycle</service>
 </construct>
 </invoke-factory>
</service-point>

+ Change the factory without recompiling
- Harder to understand
- Easier to make mistakes

32

Sharing

Recall the second weakness of Java constructors
Java constructors always return a new object, never a

pre-existing object
•  Singleton: only one object exists at runtime

–  Factory method returns the same object every time
(we’ve seen this already)

•  Interning: only one object with a particular (abstract) value
exists at runtime
–  Factory method returns an existing object, not a new

one
•  Flyweight: separate intrinsic and extrinsic state, represent

them separately, and intern the intrinsic state
–  Implicit representation uses no space

33

Interning pattern
•  Reuse existing objects instead of creating new ones

–  Less space
–  May compare with == instead of equals()

•  Permitted only for immutable objects

34

(Street-
Segment)

"Univ. Way"
(String)

"O2139"
(String)

101-200
(Street-

NumberSet)

(Street-
Segment)

"Univ. Way"
(String)

"O2139"
(String)

1-100
(Street-

NumberSet)

(Street-
Segment)

101-200
(Street-

NumberSet)

(Street-
Segment)

1-100
(Street-

NumberSet)

"Univ. Way"
(String)

"O2139"
(String)

StreetSegment
without interning

StreetSegment
with interning

Interning mechanism

•  Maintain a collection of all objects
•  If an object already appears, return that instead

HashMap<String, String> segnames; // why not Set<String>?
String canonicalName(String n) {
 if (segnames.containsKey(n)) {
 return segnames.get(n);
 } else {
 segnames.put(n, n);
 return n;
 }
}

•  Java builds this in for strings: String.intern()
•  Two approaches:

–  create the object, but perhaps discard it and return another
–  check against the arguments before creating the new object

35

Set supports
contains but not get

java.lang.Boolean
does not use the Interning pattern

public class Boolean {
 private final boolean value;
 // construct a new Boolean value
 public Boolean(boolean value) {
 this.value = value;
 }

 public static Boolean FALSE = new Boolean(false);
 public static Boolean TRUE = new Boolean(true);

 // factory method that uses interning
 public static valueOf(boolean value) {
 if (value) {
 return TRUE;
 } else {
 return FALSE;
 }
 }
}

36

Recognition of the problem

•  Javadoc for Boolean constructor:
–  Allocates a Boolean object representing the value argument.
–  Note: It is rarely appropriate to use this constructor. Unless

a new instance is required, the static factory valueOf
(boolean) is generally a better choice. It is likely to yield
significantly better space and time performance.

•  Josh Bloch (JavaWorld, January 4, 2004):
–  The Boolean type should not have had public constructors.

There's really no great advantage to allow multiple trues or
multiple falses, and I've seen programs that produce millions of
trues and millions of falses, creating needless work for the
garbage collector.

–  So, in the case of immutables, I think factory methods are great.

37

Flyweight pattern

•  Good when many objects are mostly the same
–  Interning works only if objects are entirely the same

(and immutable!)
•  Intrinsic state: same across all objects

–  Technique: intern it (interning requires immutability)
•  Extrinsic state: different for different objects

–  Represent it explicitly
–  Advanced technique: make it implicit (don’t even

represent it!)
•  Making it implicit requires immutability (or other

properties)

38

Example without flyweight: bicycle spoke

class Wheel {
 FullSpoke[] spokes;
 ...
}
class FullSpoke {
 int length;
 int diameter;
 bool tapered;
 Metal material;
 float weight;
 float threading;
 bool crimped;
 int location; // rim and hub holes this is installed in
}

Typically 32 or 36 spokes per wheel

but only 3 varieties per bicycle.
In a bike race, hundreds of spoke varieties, millions of instances

39

Alternatives to FullSpoke
class IntrinsicSpoke {
 int length;
 int diameter;
 boolean tapered;
 Metal material;
 float weight;
 float threading;
 boolean crimped;
}

This doesn't save space: it's the same as FullSpoke
class InstalledSpokeFull extends IntrinsicSpoke {
 int location;
}

This saves space
class InstalledSpokeWrapper {
 IntrinsicSpoke s; // refer to interned object
 int location;
}

… but flyweight version uses even less space

40

Original code to true (align) a wheel
class FullSpoke {
 // Tension the spoke by turning the nipple the
 // specified number of turns.
 void tighten(int turns) {
 ... location ... // location is a field
 }
}

class Wheel {
 FullSpoke[] spokes;
 void align() {
 while (wheel is misaligned) {
 // tension the ith spoke
 ... spokes[i].tighten(numturns) ...
 }
 }
}

What is the value of the location
field in spokes[i]?

41

Flyweight code to true (align) a wheel
class IntrinsicSpoke {
 void tighten(int turns, int location) {
 ... location ... // location is a parameter
 }
}

class Wheel {
 IntrinsicSpoke[] spokes;

 void align() {
 while (wheel is misaligned) {
 // tension the ith spoke, which affects the wheel
 ... spokes[i].tighten(numturns, i) ...
 }
 }
}

42

Flyweight discussion

•  What if FullSpoke contains a wheel field
pointing at the Wheel containing it?

•  What if FullSpoke contains a boolean
broken field?

•  Flyweight is manageable only if there are very
few mutable (extrinsic) fields.

•  Flyweight complicates the code.
•  Use flyweight only when profiling has

determined that space is a serious problem.

Wheel methods pass this to the
methods that use the wheel field.

Add an array of booleans in Wheel,
parallel to the array of Spokess.

43

