
CSE 331 
Software Design & Implementation 

Hal Perkins 
Autumn 2012 
Debugging 

(Slides by Mike Ernst and David Notkin) 

1 



Ways to get your code right 

Verification/quality assurance 
Purpose is to uncover problems and increase confidence 
Combination of reasoning and test 

Debugging 
Finding out why a program is not functioning as intended 

Defensive programming 
Programming with validation and debugging in mind 

Testing ≠ debugging 
test: reveals existence of problem; test suite can also 
increase overall confidence 
debug: pinpoint location + cause of problem 

 
 2 



Grace Hopper’s log book, Sep 9, 1947 

•  Alan Perlis  

Grace Hopper 



A Bug’s Life 

defect – mistake committed by a human 
as seen as a problem in the code 
failure – visible error:  program violates its 
specification 
root cause – core issue that led to the defect 
[One set of definitions – there are others] 
 
Debugging starts when a failure is observed 

Unit testing 
Integration testing 
In the field 

4 



Defense in depth (1) 

Make errors impossible 
Java prevents type errors, memory overwrites 

Don’t introduce defects 
Correctness: get things right the first time 

Make errors immediately visible 
Local visibility of errors: best to fail immediately 
Examples:  assertions; checkRep() to check 
representation invariants 
 

5 



Defense in depth (2) 

Last resort is debugging 
Needed when failure (effect) is distant from cause 
(defect) 
Scientific method:  Design experiments to gain 
information about the defect 

Fairly easy in a program with good modularity, 
representation hiding, specs, unit tests etc. 
Much harder and more painstaking with a poor 
design, e.g., with rampant representation 
exposure 

6 



First defense: Impossible by design 

In the language 
Java makes memory overwrite errors impossible 
Java/etc. won’t allow method argument type mismatch 

In the protocols/libraries/modules 
TCP/IP guarantees that data is not reordered 
BigInteger guarantees that there is no overflow 

In self-imposed conventions 
Ban recursion to prevent infinite recursion/ insufficient 
stack – although it may just push the problem elsewhere 
Immutable data structure guarantees behavioral equality 
Caution:  You must maintain the discipline  

7 



Second defense:  Correctness 
Get things right the first time 

Think before you code.  Don’t code before you think! 
If you're making lots of easy-to-find defects, you're also making 
hard-to-find defects – don't use the compiler as crutch 

Especially true, when debugging is going to be hard  
Concurrency, real-time environment, no access to customer 
environment, etc. 

Simplicity is key 
Modularity 

Divide program into chunks that are easy to understand 
Use abstract data types/modules with well-defined interfaces 
Use defensive programming; avoid rep exposure 

Specification 
Write specs for all modules, so that an explicit, well-defined 
contract exists between each module and its clients 

8 



Strive for simplicity 

“There are two ways of constructing a software 
design:  

One way is to make it so simple that there  
are obviously no deficiencies, and 
the other way is to make it so complicated  
that there are no obvious deficiencies. 

The first method is far more difficult.” 
 
 
“Debugging is twice as hard as writing the code 
in the first place. Therefore, if you write the code 
as cleverly as possible, you are, by definition, 
not smart enough to debug it.” 

Sir Anthony Hoare 

Brian Kernighan 
9 



Third defense:  Immediate visibility 

If we can't prevent errors, we can try to localize them to a 
small part of the program 

Assertions: catch errors early, before they 
contaminate and are perhaps masked by further 
computation 
Unit testing: when you test a module in isolation, any 
failure is due to a defect in that unit (or the test driver) 
Regression testing: run tests as often as possible 
when changing code.  If there is a failure, chances 
are there's a mistake in the code you just changed 

If you can localize problems to a single method or small 
module, defects can usually be found simply by studying 
the program text 

10 



Benefits of immediate visibility 

The key difficulty of debugging is to find the defect:  the 
code fragment responsible for an observed problem  

A method may return an erroneous result, but be itself 
error-free, if there is prior corruption of representation 

The earlier a problem is observed, the easier it is to fix 
Frequently checking the rep invariant helps 

General approach: fail-fast 
Check invariants, don't just assume them 
Don't (usually) try to recover from errors – it may just 
mask them 

11 



Don't hide errors 

// k is guaranteed to be present in a 
int i = 0; 
while (a[i] != k) { 
  //if (a[i]==k) break; 
  i++; 
} 

 
This code fragment searches an array a for a value k 

Value is guaranteed to be in the array 
What if that guarantee is broken (by a defect)? 

Temptation: make code more “robust” by not failing 

12 



Don't hide errors 

// k is guaranteed to be present in a 
int i = 0; 
while (i<a.length) { 
  if (a[i]==k) break; 
  i++; 
} 
 

Now at least the loop will always terminate 
But it is no longer guaranteed that a[i]==k 
If other code relies on this, then problems arise later  
Hiding the error makes it harder to see the link 
between the defect and the failure 

13 



Don't hide errors 

// k is guaranteed to be present in a 
int i = 0; 
while (i<a.length) { 
  if (a[i]==k) break; 
  i++; 
} 
assert (i!=a.length) : "key not found"; 

 

Assertions let us document and check invariants 
Abort/debug program as soon as problem is detected 

Turn an error into a failure 
But the assertion is not checked until we use the data, which might 
be a long time after the original error 

“why isn’t the key in the array?” 

14 



Checks In Production Code 

Should you include assertions and checks in production 
code?  

Yes: stop program if check fails - don’t want to take 
chance program will do something wrong 
No: may need program to keep going, maybe defect 
does not have such bad consequences (the failure is 
acceptable) 
Correct answer depends on context! 

Ariane 5 – program halted because of overflow in 
unused value, exception thrown but not handled until 
top level, rocket crashes…  

[full story is more complicated] 

15 



Regression testing 

Whenever you find and fix a defect 
Add a test for it 
Re-run all your tests 

Why is this a good idea? 
Often reintroduce old defects while fixing new ones 
Helps to populate test suite with good tests 
If a defect happened once, it could well happen again 

Run regression tests as frequently as you can afford to 
Automate the process 
Make concise test suites, with few superfluous tests 

16 



Last resort: debugging 

Defects happen – people are imperfect 
Industry average: 10 defects per 1000 lines of code (“kloc”) 

Defects that are not immediately localizable happen 
Found during integration testing 
Or reported by user 

The cost of an error increases by an order of magnitude for 
each lifecycle phase it passes through 
 
step 1 – Clarify symptom (simplify input), create test 
step 2 – Find and understand cause, create better test 
step 3 – Fix 
step 4 – Rerun all tests 
 
 

17 



The debugging process 
step 1 – find a small, repeatable test case that produces the 
failure (may take effort, but helps clarify the defect, and also gives 
you something for regression) 

Don't move on to next step until you have a repeatable test 
step 2 – narrow down location and proximate cause 

Study the data / hypothesize / experiment / repeat 
May change the code to get more information 
Don't move on to next step until you understand the cause 

step 3 – fix the defect 
Is it a simple typo, or design flaw?  Does it occur elsewhere? 

step 4 – add test case to regression suite 
Is this failure fixed?  Are any other new failures introduced? 

 
 18 



Debugging and the scientific method 

Debugging should be systematic 
Carefully decide what to do  

Don’t flail! 
Keep a record of everything that you do 
Don’t get sucked into fruitless avenues 

Formulate a hypothesis 
Design an experiment 
Perform the experiment 
Adjust your hypothesis and continue 

19 



Reducing input size example 

// returns true iff sub is a substring of full 
// (i.e. iff there exists A,B s.t.full=A+sub+B) 
boolean contains(String full, String sub); 

User bug report 
It can't find the string "very happy" within: 

"Fáilte, you are very welcome! Hi Seán! I 
am very very happy to see you all." 

Poor responses 
See accented characters, panic about not knowing about 
unicode, grab your Java texts to see how that is handled 

Or google “unicode”, “funny characters”, etc. 
Try to trace the execution of this example 

Better response: simplify/clarify the symptom 

20 



Reducing absolute input size 

Find a simple test case by divide-and-conquer 
Pare test down – can't find "very happy" within 

"Fáilte, you are very welcome! Hi Seán! 
I am very very happy to see you all." 
"I am very very happy to see you all." 
"very very happy" 

Can find "very happy" within 
"very happy" 

Can't find "ab" within "aab" 

21 



Reducing relative input size 

Sometimes it is helpful to find two almost identical test 
cases where one gives the correct answer and the other 
does not 

Can't find "very happy" within 
"I am very very happy to see you all." 

Can find "very happy" within 
"I am very happy to see you all.” 

22 



General strategy:  simplify 

In general: find simplest input that will provoke failure 
Usually not the input that revealed existence of the 
defect 

Start with data that revealed the defect 
Keep paring it down (“binary search” can help) 
Often leads directly to an understanding of the cause 

When not dealing with simple method calls: 
The “test input” is the set of steps that reliably trigger 
the failure 
Same basic idea 

23 



Localizing a defect 

Take advantage of modularity 
Start with everything, take away pieces until failure 
goes away 
Start with nothing, add pieces back in until failure 
appears 

Take advantage of modular reasoning 
Trace through program, viewing intermediate results 

Binary search speeds up the process 
Error happens somewhere between first and last 
statement 
Do binary search on that ordered set of statements 

24 



binary search on buggy code 
public class MotionDetector { 
    private boolean first = true; 
    private Matrix prev = new Matrix(); 
 
    public Point apply(Matrix current) { 
        if (first) { 
            prev = current; 
        } 
        Matrix motion = new Matrix(); 
        getDifference(prev,current,motion); 
        applyThreshold(motion,motion,10); 
        labelImage(motion,motion); 
        Hist hist = getHistogram(motion); 
        int top = hist.getMostFrequent(); 
        applyThreshold(motion,motion,top,top); 
        Point result = getCentroid(motion); 
        prev.copy(current); 
        return result; 
    } 
} 

no problem yet 

problem exists 

Check  
intermediate result 
at half-way point 

25 



binary search on buggy code 

Check  
intermediate result 
at half-way point 

no problem yet 

problem exists 

Quickly home in 
on defect in O(log n) time 
by repeated subdivision 

26 

public class MotionDetector { 
    private boolean first = true; 
    private Matrix prev = new Matrix(); 
 
    public Point apply(Matrix current) { 
        if (first) { 
            prev = current; 
        } 
        Matrix motion = new Matrix(); 
        getDifference(prev,current,motion); 
        applyThreshold(motion,motion,10); 
        labelImage(motion,motion); 
        Hist hist = getHistogram(motion); 
        int top = hist.getMostFrequent(); 
        applyThreshold(motion,motion,top,top); 
        Point result = getCentroid(motion); 
        prev.copy(current); 
        return result; 
    } 
} 



Detecting Bugs in the Real World 

Real Systems 
Large and complex (duh!) 
Collection of modules, written by multiple people 
Complex input 
Many external interactions  
Non-deterministic 

Replication can be an issue 
Infrequent failure 
Instrumentation eliminates the failure 

Defects cross abstraction barriers  
Large time lag from corruption (defect) to detection (failure) 
 

27 



Heisenbugs 

Sequential, deterministic program – failure is repeatable 
But the real world is not that nice… 

Continuous input/environment changes 
Timing dependencies 
Concurrency and parallelism 

Failure occurs randomly 
Hard to reproduce 

Use of debugger or assertions à failure goes away 
Only happens when under heavy load 
Only happens once in a while 

28 



Debugging In Harsh Environments 

Failure is non-
deterministic, difficult to 
reproduce 
 
Can’t print or use 
debugger 
 
Can’t change timing of 
program (or defect/failure 
depends on timing) 

29 



Logging Events 

Log (record) events during execution as program runs 
at speed 
When error detected, stop program and examine logs to 
help reconstruct the past 
The log may be all you know about a customer’s 
environment 

Needs to tell you enough to reproduce the failure 
Performance / advanced issues: 

To reduce overhead, store in main memory, not on 
disk (trade performance vs stable storage) 
Circular logs avoid resource exhaustion and may be 
good enough 

30 



Tricks for Hard Bugs 

Rebuild system from scratch, or restart/reboot 
Find the bug in your build system or persistent data 
structures 

Explain the problem to a friend (or to a rubber duck) 
Make sure it is a bug 

Program may be working correctly and you don’t realize it! 
Minimize input required to exercise bug (exhibit failure) 
Add checks to the program 

Minimize distance between error and detection/failure 
Use binary search to narrow down possible locations 

Use logs to record events in history 

31 



Where is the defect? 
The defect is not where you think it is 

Ask yourself where it cannot be; explain why 
Look for stupid mistakes first, e.g., 

Reversed order of arguments:  
 Collections.copy(src, dest); 

Spelling of identifiers: int hashcode() 
@Override can help catch method name typos 

Same object vs. equal: a == b versus a.equals(b) 
Failure to reinitialize a variable 
Deep vs. shallow copy 

Make sure that you have correct source code! 
Check out fresh copy from repository 
Recompile everything 

32 



When the going gets tough 

Reconsider assumptions 
e.g., has the OS changed?  Is there room on the hard 
drive?  Is it a leap year? 2 full moons in the month? 
Debug the code, not the comments 

Verify that comments and specs describe the code 
Start documenting your system 

Gives a fresh angle, and highlights area of confusion 
Get help 

We all develop blind spots 
Explaining the problem often helps (even to rubber duck) 

Walk away 
Trade latency for efficiency – sleep! 
One good reason to start early 

33 



Key Concepts 

Testing and debugging are different 
Testing reveals existence of failures 
Debugging pinpoints location of defects 

Goal is to get program right 
Debugging should be a systematic process 

Use the scientific method 
Understand the source of defects 

To find similar ones and prevent them in the future 

34 


