
CSE 331
Software Design & Implementation

Hal Perkins
Autumn 2012

Java Classes, Interfaces, and Types

1

Classes, Interfaces, Types

The fundamental unit of programming in Java is the class
definition – everything is defined in some class
But Java also provides interfaces…
Classes can extend other classes and implement
interfaces…
Interfaces can extend other interfaces…
Some classes are abstract…
And somehow this is all related to types!

How does this work? How are these things connected?
What is their intended use?

More in the fullness of time, but let’s get started…

2

Classes, Objects, and Java

Ignoring static cruft for now…
Everything is an instance of a class (an object)
Every class defines data and methods
Every class extends exactly one other class

Object if no superclass is explicitly named
A class inherits superclass fields and methods
Every class also defines a type – i.e., class Foo defines
type Foo, and also has all inherited types, e.g., Object

Not explored in depth today, but later…
So a class is both specification and implementation

 3

But…

How do we express relationships between classes?
Inheritance captures what we want if one class “is-a”
specialization of another

 class Cat extends Mammal { … }
But that’s not really right if classes share a behavior or
concept but don’t have an “is-a” relationship:

E.g., Strings, Sets, and Dates are “Comparable” (we
can ask if x is “less than” y) but there are no “is-a”
relationships involved

And what if we want a class with multiple properties?
Can’t extend multiple classes, even if that would do
what we want…

4

Java Interfaces

Pure type declaration. Example (without generics):
 public interface Comparable {
 int compareTo(Object other);
 }

Defines a type (Comparable here). Can contain:
Method specifications (no implementations)
Named constants

Interface elements are implicitly public
Constants are also implicitly final, static
Methods are also implicitly abstract (means: specified
only, no implementation provided…)

Cannot create instances of interfaces – they’re abstract and
do not contain implementations of methods

e.g., can’t do Comparable c = new Comparable();

5

Implementing Interfaces

A class can implement one or more interfaces:
class Gadget implements Comparable{ … }

Semantics:
The implementing class and its instances have the
interface type(s) as well as the class type
The class must provide or inherit an implementation
of all methods defined in the interface(s)

Approximately correct – need to fix for abstract
classes (later)

6

Using Interface Types

An interface defines a type, so we can declare variables
and parameters of that type

Key point: A variable with an interface type can refer to
an object of any class implementing that type

Examples:

 List<String> x = new ArrayList<String>();
 List<String> y = new LinkedList<String>();

Variables x and y both have type List<String>

7

Programming with Interface Types

This is not new. You’ve seen this with Java collections:
 class ArrayList implements List {…}
 class LinkedList implements List {…}

(Generic types omitted for simplicity for now)

Client code:

 void mangle(List victim) { … }
Method argument can be anything that has type List
(like an ArrayList or LinkedList)

8

Guidelines for Interfaces

Provide interfaces for significant types / abstractions

Write code using interface types like Map wherever possible;
only use specific classes like HashMap or TreeMap when you
need to (creating new objects is the most obvious example)

Allows code to work with different implementations later

Consider providing classes with complete or partial interface
implementation for direct use or subclassing

Both interfaces and classes are appropriate in various
circumstances

9

