
CSE 331
Software Design & Implementation

Hal Perkins
Autumn 2012

Abstract Data Types – Examples / Summary
(Based on slides by Mike Ernst and David Notkin)

1

ADT operations and mutation

Creators/Producers
Creators: return new ADT values (e.g., Java
constructors). Effects, not modifies
Producers: ADT operations that return new values

Mutators: Modify a value of an ADT
Observers: Return information about an ADT

Mutable ADTs: creators, observers, and mutators
Immutable ADTs: creators, observers, and producers

2

Three examples

A primitive type as an (immutable) ADT
An immutable type as an ADT
A mutable type as an ADT

3

Primitive data types are ADTs

int is an immutable ADT:
creators: 0, 1, 2, ...
producers: + - * / ...
observer: Integer.toString(int)

Peano showed we can define int with only one creator

Would this be a good programming language design
choice? Why might we want to do this?

4

Poly, an immutable datatype: overview

/**
 * A Poly is an immutable polynomial with
 * integer coefficients. A typical Poly is
 * c0 + c1x + c2x2 + ...
 **/
class Poly {

Overview:
Always state whether mutable or immutable
Define an abstract model for use in operation specifications

Often difficult and always vital!
Appeal to math if appropriate
Give an example (reuse it in operation definitions)

In all ADTs, the state in specifications is abstract, not concrete
(coefficients above refer to specification, not implementation.)

5

Poly: creators

 // effects: makes a new Poly = 0
 public Poly()

 // effects: makes a new Poly = cxn

 // throws: NegExponent if n < 0
 public Poly(int c, int n)

Creators
New object, not part of pre-state: effects, not modifies
Overloading: distinguish procedures of same name by
parameters (Example: two Poly constructors)

Footnote: slides omit full JavaDoc comments to save space;
style might not be perfect either – focus on main ideas

6

Poly: observers

// returns: the degree of this,
// i.e., the largest exponent with a
// non-zero coefficient.
// Returns 0 if this = 0.
public int degree()

// returns: the coefficient of the term
// of this whose exponent is d
public int coeff(int d)

7

Notes on observers

Observers
Used to obtain information about objects of the type
Return values of other types
Never modify the abstract value
Specification uses the abstraction from the overview

 this
The particular Poly object being accessed
The target of the invocation
Also known as the receiver

Poly x = new Poly(4, 3);
int c = x.coeff(3);
System.out.println(c); // prints 4

8

Poly: producers

// returns: this + q (as a Poly)
public Poly add(Poly q)

// returns: the Poly = this * q
public Poly mul(Poly q)

// returns: -this
public Poly negate()

9

Notes on producers

Operations on a type that create other objects of the type
Common in immutable types like java.lang.String

 String substring(int offset, int len)
No side effects

Cannot change the abstract value of existing objects

10

IntSet, a mutable datatype:
overview and creator

// Overview: An IntSet is a mutable,
// unbounded set of integers. A typical
// IntSet is { x1, ..., xn }.
class IntSet {

 // effects: makes a new IntSet = {}
 public IntSet()

11

IntSet: observers

// returns: true if x ∈ this
// else returns false
public boolean contains(int x)

// returns: the cardinality of this
public int size()

// returns: some element of this
// throws: EmptyException when size()==0
public int choose()

12

IntSet: mutators

// modifies: this
// effects: thispost = thispre ∪ {x}
public void add(int x)

// modifies: this
// effects: thispost = thispre - {x}
public void remove(int x)

13

Notes on mutators

Operations that modify an element of the type
Rarely modify anything other than this

Must list this in modifies clause (if appropriate)
Typically have no return value

(sometimes return “old” value that was replaced)
Mutable ADTs may have producers too, but that is less
common

14

Quick recap

The examples focused on the abstract specification –
with no connection at all to a concrete implementation

To connect them we need the abstraction function (AF)
that maps values of the concrete implementation of the
ADT into abstract values in the specification

The representation invariant (RI) ensures that values in
the concrete implementation are well-defined – i.e., the
RI must hold for every element in the domain of the AF

15

The abstraction function is a function

Why do we map concrete to abstract and not vice
versa?

It’s not a function in the other direction.

E.g., lists [a,b] and [b,a] each represent the set
{a, b}

It’s not as useful in the other direction.

We can manipulate abstract value through abstract
operations

16

Brief example
Abstract stack with array and

“top” index implementation

new() 0 0 0

push(17) 17 0 0

T
o
p
=
1

push(-9) 17 -9 0

T
o
p
=
2

T
o
p
=
0

stack	
 =	
 <>	

stack	
 =	
 <17>	

stack	
 =	
 <17,-­‐9>	

pop() 17 -9 0

stack	
 =	
 <17>	

T
o
p
=
1

Abstract states are the same
stack	
 =	
 <17>	
 =	
 <17>	

Concrete states are different
<[17,0,0], top=1>

≠
<[17,-9,0], top=1>

AF is a function

AF-1 is not a function
CSE 331 Autumn 2011

Benevolent side effects

Different implementation of member:
boolean member(Character c1) {
 int i = elts.indexOf(c1);
 if (i == -1)
 return false;
 // move-to-front optimization
 Character c2 = elts.elementAt(0);
 elts.set(0, c1);
 elts.set(i, c2);
 return true;
}

Move-to-front speeds up repeated membership tests
Mutates rep, but does not change abstract value

AF maps both reps to the same abstract value

18

r r’

a

op
 ⇒

AF AF

q  Creating the concrete object must establish the representation invariant
q  Every concrete operation must maintain the rep invariant
q  Creating the abstraction object must establish the abstraction function
q  Every abstract operation must maintain the AF to provide consistent

semantic meaning to the client
q  If things are right, either red arrow above will give the same result

Writing an abstraction function

The domain: all representations that satisfy the rep
invariant
The range: can be tricky to denote

For mathematical entities like sets: easy
For more complex abstractions: give names to fields
or derived values

AF defines the value of each “specification field”
“derived specification fields” more complex

The overview section of the specification should provide
a way of writing abstract values

A printed representation is valuable for debugging
 20

ADTs and Java language features

Java classes
Make operations in the ADT public
Make other ops and fields of the class private
Clients can only access ADT operations

Java interfaces
Clients only see the ADT, not the implementation
Multiple implementations have no code in common
Cannot include creators (constructors) or fields

Both classes and interfaces are sometimes appropriate
Write and rely upon careful specifications
Prefer interface types instead of specific classes in
declarations (e.g., List instead of ArrayList for
variables and parameters)

21

Representation exposure redux

•  Hiding the representation of data in the concrete
implementation increases the strength of the
specification contract, making the rights and
responsibilities of both the client and the implementer
clearer

•  Defining the fields as private in a class is not
sufficient to ensure that the representation is hidden

•  Representation exposure arises when information
about the representation can be determined by the
client

22

Representation exposure

Is Line mutable or immutable?
It depends on the implementation!

If Line creates an internal copy: immutable
If Line stores a reference to p1, p2: mutable

Lesson: storing a mutable object in an immutable
collection can expose the representation

23

Point p1 = new Point();
Point p2 = new Point();
Line line = new Line(p1,p2);
p1.translate(5, 10); // move point p1

A half-step backwards

Why focus so much on invariants (properties of code
that do not – or are not supposed to – change)?
Why focus so much on immutability (a specific kind of
invariant)?

Software is complex – invariants/immutability etc. allow
us to reduce the intellectual complexity to some degree
That is, if we can assume some property remains
unchanged, we can consider other properties instead
Simplistic to some degree, but reducing what we need
to think about in a program can be a huge benefit

24

