
STUDENT NAME: ___

CSE331 11AU MIDTERM Page 1

CSE331 Autumn 2011 Midterm Examination
October 28, 2011

• 50 minutes; 75 points total.

• Open note, open book, closed neighbor, closed anything electronic (computers, web-

enabled phones, etc.)

• An easier-to-read answer makes for a happier-to-give-partial-credit grader

 Points Your score

Part I: T/F and explain 12

Part II: Testing 22

Part III: Specification 18

Part IV: ADTs 20

Part V: Miscellaneous 3

Total 75

Don’t turn the page until the proctor gives the go ahead!

STUDENT NAME: ___

CSE331 11AU MIDTERM Page 2

Part I: True/False with a one-sentence justification (12 points total)

1. A representation invariant for an ADT implementation must hold

before and after each statement in every method of that

implementation.

2. Consider the Duration class presented in Lecture #4:

public class Duration {

 private final int min;

 private final int sec;

 public Duration(int min, int sec) {

 this.min = min;

 this.sec = sec;

 }

}

True or false: The following HashCode definition is safe for

instances of the Duration class:

public int hashCode() {

 return sec*min;

}

STUDENT NAME: ___

CSE331 11AU MIDTERM Page 3

3. If all constructors of a Java class C are declared to be private,

no client of the class can create objects of type C.

4. Extending a Java abstract class can sometimes produce a true

subtype.

STUDENT NAME: ___

CSE331 11AU MIDTERM Page 4

5. When a JUnit test fails, the programmer must change the program

being tested.

6. Java generics shift the time at which programmers see errors from

run-time to compile-time.

STUDENT NAME: ___

CSE331 11AU MIDTERM Page 5

Part II: Testing (22 total points)

1. (6 points) A basic implementation of getGreeting from

RandomHello is:

/**

 * @return a random greeting from a list of

 * five different greetings.

 */

public static String getGreeting() {

 Random randomGenerator = new Random();

 return(greetings[randomGenerator.nextInt(5)]);

}

If you replace the last statement with

return(greetings[(randomGenerator.nextInt(5)+103312)%5])

where % is the modulus operator (x % y means x mod y), which

of the following tests (discussed in lecture and having descriptive

names), if any, fail for this implementation? Briefly justify.

 testDoes_getGreeting_returnDefinedGreeting

 testDoes_getGreetingNeverReturnSomeGreeting

 test_UniformGreetingDistribution

STUDENT NAME: ___

CSE331 11AU MIDTERM Page 6

2. (8 points) Consider a simple form of random test generation, where

the data passed to a method is selected randomly. For example,

for binarySearch the length and contents of the array to be

searched can be selected at random, as can the key to search for.

Describe (in at most two sentences for each) two challenges that

would arise from this simplistic method of testing.

STUDENT NAME: ___

CSE331 11AU MIDTERM Page 7

3. (8 points) Consider the following specification that is a variant of

the binary search specification – basically, it now takes an

unsorted array:
/**

 * @param data is an int array in which to search for the key

 * @param key the key to search for in data

 * @returns some i such that data[i] = key if such an i exists,

 * otherwise -1

 */

public static int unsortedSearch(int[] data, int key)

Write four black-box tests for this method. Each test should be
intended to exercise a different possible subdomain, and you must
briefly describe what that intended subdomain is for each test. For
example, here is one test (no, you cannot repeat this one) and
description:

@Test

 public void testFoundKeyNearMiddle() {

 int[] td = {9, 32, -18, 99, 77};

 assertEquals(2,UnsortedSearch.unsortedSearch(td,-18));

}

Description: This is a basic test of the subdomain representing

success in finding a key in the middle of the array.

STUDENT NAME: ___

CSE331 11AU MIDTERM Page 8

Part III: Specifications (15 total points)

1. (10 points) Consider the following code (which compiles, runs, etc.):

static void uniquify(List<Integer> lst) {

 for (int i=0; i < lst.size()-1; i++)

 if (lst.get(i) == lst.get(i+1))

 lst.remove(i);

}

Fill-in the following specification for this code:

static void uniquify(List<Integer> lst)

 requires ???

 modifies ???

 effects ???

 returns ???

STUDENT NAME: ___

CSE331 11AU MIDTERM Page 9

2. (8 points) Is the following situation possible (S means specification,

I means implementation)?

S1 is satisfied by I1 S2 is satisfied by I1

S1 is satisfied by I2 S2 is satisfied by I2

S1 S2

Briefly justify your answer.

STUDENT NAME: ___

CSE331 11AU MIDTERM Page 10

Part IV: ADTs (20 total points)

1. (12 points total) For each of the four following pairs of ADTs, select

• T1< T2: T1 is a true subtype of T2

• T1> T2: T2 is a true subtype of T1

• T1 T2: T1 and T2 are incomparable

• Other: Cannot tell from this information

 < > Other?
[Write answers
in this column]

T1 T2

(a) 2-dimensional points

[Standard mutable 2D (x,y)
points and operations]

3-dimensional points

[Standard mutable 3D
(x,y,z) points and
operations]

(b) Java Integer Java int

(c) Java String Java Character[]

(d) AbstractCollection<E>

[AbstractCollection<E>
provides a skeletal
implementation of
the Collection interface,
to minimize the effort
required to implement this
interface.]

Set<E>

[The Set interface
places additional
stipulations, beyond
those inherited from
the Collection inter-
face, on the contracts
of all constructors and
on the contracts of
the add, equals and
hashCode methods.]

STUDENT NAME: ___

CSE331 11AU MIDTERM Page 11

2. (8 points total) Consider the following Java code (which is legal
and not intended to be surprising or confusing):

public class DayHour {

 private int day;

 private int hour;

 public DayHour(int d, int h) { // constructor

 day = d;

 hour = h;

 }

 public int getDay() {

 return day;

 }

 public int getHour() {

 return hour;

 }

 public String getHour12() {

 if (hour > 12)

 return hour + "AM";

 else

 return (hour - 12) + "PM";

 }

}

a. (4 points) What is the most appropriate representation
invariant for the class?

b. (4 points) If the class has some representation exposure,
briefly describe it. If not, briefly justify why not.

STUDENT NAME: ___

CSE331 11AU MIDTERM Page 12

Part V: Miscellaneous (3 total points)

What part of the course so far has taken the most time “stuck” on something? A
particular Java language construct or concept? A particular function of Eclipse or of
JUnit? In other words, what have you spent the most time on for the least value in
the course?

