
STUDENT NAME: ___

CSE331 11AU MIDTERM Page 1

CSE331 Autumn 2011 Midterm Examination
October 28, 2011

• 50 minutes; 75 points total.

• Open note, open book, closed neighbor, closed anything electronic (computers, web-

enabled phones, etc.)

• An easier-to-read answer makes for a happier-to-give-partial-credit grader

 Points Your score
Part I: T/F with explanation 12
Part II: Testing 22
Part III: Specification 18
Part IV: ADTs 20
Part V: Miscellaneous 3

Total 75

Don’t turn the page until the proctor gives the go ahead!

THIS VERSION CONTAINS THE ANSWER KEY

AND VARIOUS PERTINENT COMMENTS.

Statistics (per Part and Overall) and histogram:

Mean 8.2 19.1 14.7 12.3 3.0 57.2

Median 8 20 15.5 12 3 57

Mode 10 22 16 11 3 55

Min 4 10 8 6 3 39

Max 12 22 18 20 3 71

0

5

10

15

20

71-75 66-70 61-65 56-60 51-55 46-50 0-45

STUDENT NAME: ___

CSE331 11AU MIDTERM Page 2

Part I: True/False with a one-sentence justification (12 points total)

1. A representation invariant for an ADT implementation must hold before and

after each statement in every method of that implementation.

FALSE: When ADT implementations make modifications to the internal

representation during execution of a method they can break a representation

invariant, and they must then re-establish the representation invariant before the

method returns.

Comments:

 It’s easy to find examples – for instance, the one (intended to show benevolent

side-effects) on Slide 26 of the lecture ADT II is clear. The CharSet in the previous

lecture also would show this, although the bodies of the implementation are only a

single statement.

 Many people who missed this simply parroted “representation invariants must

hold at all times” without considering either than the data in a representation

must change (usually meaning that the RI will be temporarily broken) or that

during execution is different from between executions.

STUDENT NAME: ___

CSE331 11AU MIDTERM Page 3

2. Consider the Duration class presented in Lecture #:

public class Duration {
 private final int min;

 private final int sec;

 public Duration(int min, int sec) {

 this.min = min;

 this.sec = sec;

 }

}

True or false: The following HashCode definition is safe for instances of the

Duration class:

public int hashCode() {

 return sec*min;

}

TRUE: This hashCode, deterministically based on sec and mind, never lets two

equivalent Duration instances have different hashCodes.

Comments:

 It is essential to remember that hashCode is a prefilter for equals – to be safe,

hashCode can return “false positives” (that is, the objects with identical

hashCodes can be different when the complete equals check is done) but cannot

return “false negatives” (that is, two objects with different hashCodes are in fact

equal).

 A simple example to see this is in the slides about Duration, with the hashCode

that always returns 1. It is safe (never rejects equal objects), albeit inefficient

(always requires full equal checks).

3. If all constructors of a Java class C are declared to be private,

no client of the class can create objects of type C.

FALSE: static public methods can do this, as can be seen in the JDK Boolean

class with valueOf.

Comments:
 We discussed this with respect to the intern pattern, but it doesn’t take patterns

to understand or answer the question.

STUDENT NAME: ___

CSE331 11AU MIDTERM Page 4

4. Extending a Java abstract class can sometimes produce a true

subtype.

TRUE: The resulting class can (but Java does not constrain it to be so) have a

stronger specification than the abstract class.

Comments:
 Since strength of specification – the key for true subtyping – is a question of

specification not implementation, it is not material that the abstract class omits

(some) implementations.

 This was a weak question – it was general enough to make it hard to tell how

much people knew and how much they were just repeating material from the

slides.

5. When a JUnit test fails, the programmer must change the program

being tested.

FALSE: The test itself might be incorrect and thus need to be changed.

6. Java generics shift the time at which programmers see errors from

run-time to compile-time.

TRUE: Without using generics, any instance of Object can be placed in a

Collection. When the client accesses one of those instances, it can (try to) apply

operations that may not apply to it. Generics eliminate this problem from run-time

by adding type-checking to the client to make sure that the operations can be

applied to instances of the subtype of Objects declared in the generic.

Comments:
 The question should have been more precise – a number of people interpreted

this as relating to “all errors” (which is a poor interpretation from anything but a

legalistic standpoint).

STUDENT NAME: ___

CSE331 11AU MIDTERM Page 5

Part II: Testing (22 total points)

1. (6 points) A basic implementation of getGreeting from

RandomHello is:

/**

 * @return a random greeting from a list of

 * five different greetings.

 */

public static String getGreeting() {

 Random randomGenerator = new Random();

 return(greetings[randomGenerator.nextInt(5)]);

}

If you replace the last statement with

return(greetings[(randomGenerator.nextInt(5)+103312)%5])

where % is the modulus operator. Which of the tests (shown next

and discussed in lecture), if any, fail for this implementation?

Briefly justify.

 testDoes_getGreeting_returnDefinedGreeting

 testDoes_getGreetingNeverReturnSomeGreeting

 test_UniformGreetingDistribution

They all pass as they did given the original program. The reason is that the changed

expression still returns uniformly within the range [0-4]. It is possible that the

test_UniformGreetingDistribution will fail at times, but with no greater

frequency that for the original program.

STUDENT NAME: ___

CSE331 11AU MIDTERM Page 6

2. (8 points) Consider a simple form of random test generation, where

the data passed to a method is selected randomly. For example,

for binarySearch the length and contents of the array to be

searched can be selected at random, as can the key to search for.

Describe (in at most two sentences for each) two challenges that

would arise from this simplistic method of testing.

There were a number of acceptable reasons, including:

● Hard to ensure coverage of edge/boundary cases.

● Hard for programmer to understand the results of the tests – both because the

tests may not be easy to repeat (due to randomization) and also because the

tests cannot clearly characterize the subdomain(s) being tested.

● Hard to know what the oracle is.

Comments:

● With respect to these answers, a few observations: (a) repeating tests can be

handled by saving the random choices automatically; and (b) determining the

oracle can be done by using another implementation of the specification.

● Concerns about problems with randomization such as “might not get sorted

array” can be handled easily without complicating anything much – generate

each successive value in the array by changing the range based on the previously

generated value. Want a key that is found or not found? Flip a coin and then

either pick a value in the array or one not in the array.

STUDENT NAME: ___

CSE331 11AU MIDTERM Page 7

3. (8 points) Consider the following specification that is a variant of the binary

search specification – basically, it now takes an unsorted array:
/**

 * @param data is an int array in which to search for the key

 * @param key the key to search for in data

 * @returns some i such that data[i] = key if such an i exists,

 * otherwise -1

 */

public static int unsortedSearch(int[] data, int key)

As usual with a specification and black-box testing, you have no idea how
this specification is implemented.

Write four black-box tests for this method. Each test should be intended to
exercise a different possible subdomain, and you must briefly describe what
that intended subdomain is for each test. For example, here is one test (no,
you cannot repeat this one) and description:

@Test

 public void testFoundKeyNearMiddle() {

 int[] td = {9, 32, -18, 99, 77};

 assertEquals(2,UnsortedSearch.unsortedSearch(td,-18));

}

Description: This is a basic test of the subdomain representing success in

finding a key in the middle of the array.

Most common tests (not showing the actual tests):

1) Empty array

2) Key not found

3) Key found at first element

4) Key found at last element

5) Key found in multiple places

Comments:

● There were other tests that were correct, and identified the subdomain, but where it

was not clear that there was a reason this subdomain would be interesting. (I gave

credit for these in general.) But why would searching for a negative number or zero

likely expose an error? Why would searching in a sorted array likely expose an error

when searching in an unsorted works? (If this was tested, it should at least test on the

same data as another test, except for the sorting of the array.) It’s not that these

aren’t subdomains – it’s that they have to be less important than (say) finding a key in

multiple locations.

STUDENT NAME: ___

CSE331 11AU MIDTERM Page 8

Part III: Specifications (20 total points)

1. (10 points) Consider the following code (which compiles, runs, etc.):

static void uniquify(List<Integer> lst) {

 for (int i=0; i < lst.size()-1; i++)

 if (lst.get(i) == lst.get(i+1))

 lst.remove(i);

}

Fill-in the following specification for this code:

static void uniquify(List<Integer> lst)

 requires ???

 modifies ???

 effects ???

 returns ???

requires: true

modifies: lst

effects: two adjacent equal values are replaced by a single instance of that value;

 that replaced single instance is not compared to the following value

returns: void

Comments:

● I took away some credit for requirements that the list be sorted. It is surely a

legitimate precondition, but it’s not necessary nor suggested by the code itself.

● For those who required a sorted list, it doesn’t make a difference if it’s sorted non-

decreasing or non-increasing.

● Most people had it right that modifies lists the elements that are modified, while

effects describes how they are modified.

STUDENT NAME: ___

CSE331 11AU MIDTERM Page 9

2. (8 points) Is the following situation possible (S means specification,

I means implementation)?

S1 is satisfied by I1  S2 is satisfied by I1 

S1 is satisfied by I2  S2 is satisfied by I2 

S1  S2
Briefly justify your answer.

This is basically setting up the following situation:

S1

S2

I1

I2

≠

It is possible: the simplest abstraction description is that this holds whenever S1 is

stronger than S2 or vice versa. There are a number of concrete examples. One given a

couple of times was (roughly) I1 and I2 as LinkedList and ArrayList, respectively, and

S1 and S2 being List and Collection, respectively.

Comments:
● Some students gave answers of the form: “Because of x, y or z, nothing stops this

situation from arising.” This is different from justifying why it can happen.

● Some students seemed to confuse specifications with implementations.

STUDENT NAME: ___

CSE331 11AU MIDTERM Page 10

Part IV: ADTs (20 total points)

1. (12 points total) For each of the five following pairs of ADTs, select

• T1< T2: T1 is a true subtype of T2

• T1> T2: T2 is a true subtype of T1

• T1  T2: T1 and T2 are incomparable

• Other: Cannot tell from this information

 < >  Other?
[Write answers
in this column]

T1 T2

(a) 3D points are
a true
subtype of
2D points

2-dimensional points

[Standard mutable 2D (x,y)
points and operations]

3-dimensional points

[Standard mutable 3D
(x,y,z) points and
operations]

(b) Integer is a
true subtype
of int

Java Integer Java int

(c) Not
comparable

Java String Java Character[]

(d) Set<E> is a
true subtype
of
AbstractionC
ollection<E>

AbstractCollection<E>

[AbstractCollection<E>
provides a skeletal
implementation of
the Collection interface,
to minimize the effort
required to implement this
interface.]

Set<E>

[The Set interface
places additional
stipulations, beyond
those inherited from
the Collection inter-
face, on the contracts
of all constructors and
on the contracts of
the add, equals and
hashCode methods.]

Comments:
● Bad question in the details. Sorry. For example, I couldn’t tell whether some people were

wrong or “just” got it all backwards. And the lack of clarity of the specifications I should have

anticipated as lousy.

STUDENT NAME: ___

CSE331 11AU MIDTERM Page 11

2. (8 points total) Consider the following Java code (which is legal and not
intended to be surprising or confusing):

public class DayHour {

 private int day;

 private int hour;

 public DayHour(int d, int h) { // constructor

 day = d;

 hour = h;

 }

 public int getDay() {

 return day;

 }

 public int getHour() {

 return hour;

 }

 public String getHour12() {

 if (hour > 12)

 return hour + "AM";

 else

 return (hour - 12) + "PM";

 }

}

a. (4 points) What is the most appropriate representation invariant for
the class?

0 <= hour <= 23
[I was going to include 0 <= day <= 31 – but the code simply doesn’t convey
this.]

Comments:
● A representation invariant is a constraint on the legal values the instance
variables can take. It is not their type (yes, this constrains the values, but at
the programming language level, not the class-implementation level).

b. (4 points) If the class has some representation exposure, briefly
describe it. If not, briefly justify why not.
No. There are no ways in which the client can (mis)use any representation
information. Indeed, the client cannot even extract any such information

Comments:
● A getter method doesn’t imply rep exposure. The constructor can take ints
and convert them to strings or something, and the getters can convert them
back.

STUDENT NAME: ___

CSE331 11AU MIDTERM Page 12

Part V: Miscellaneous (3 total points)

What part of the course so far has taken the most time “stuck” on something? A
particular Java language construct or concept? A particular function of Eclipse or of
JUnit? In other words, what have you spent the most time on for the least value in
the course?

Everyone got credit for this.

The general breakdown was:

ADTs & AF/RI 16

svn 10

JUnit/testing 9

subtyping 7

java constructs 7

hw 5

design/patterns 3

eclipse 2

Some of the topics – like JUnit/testing – varied from “how to use JUnit” to “how to pick
subdomains effectively”

