
University of Washington
CSE 331 Software Design & Implementation

Spring 2010

Midterm exam
Friday, April 23, 2010

Name: Solutions

UW Net ID:

This quiz is closed book, closed notes. You have50 minutesto complete it. It contains 28 questions and 8
pages (including this one), totaling 100 points. Before you start, please check your copy to make sure it is
complete. Turn in all pages, together, when you are finished.Write your initials on the top of ALL pages.

Please write neatly; we cannot give credit for what we cannot read.
Good luck!

Page Max Score
2 26
3 16
4 6
5 8
6 20
7 24
Total 100

Initials: Solutions 1 TRUE/FALSE

1 True/False

(2 points each) Circle the correct answer. T is true, F is false.

1. T / F When specification testing, it is good practice (but not required) to checkthat aRuntimeException
is thrown when invalid input is passed to a method.

2. T / F The representation invariant (RI) is guaranteed to hold for a correct implementation of an
immutable abstraction, when no method in the class is executing.

3. T / F The representation invariant (RI) is guaranteed to hold for a correct implementation of a
mutable abstraction, when no method in the class is executing.

4. T / F It is a violation of the abstraction barrier for a class to directly use fields of itssuperclass.

5. T / F When the internal state of an object changes, its hash code must also change.

6. T / F A method may throw an exception if, and only if, the exception is listed in the throwsclause
of the method specification.

7. T / F A good black-box test should be designed to cover every branch of thecode, because any
untested code might harbor bugs.

Black-box tests should not consider the implementation, only the specification.

8. T / F A class that represents a Cartesian point should include a method to compute the x and y
coordinates,or the rho and theta coordinates, butnot all 4 methods, because including all of these
makes the implementation bulky, and clients can always do the transformation.

These methods conceptually belong to the class, not to a client. Furthermore,the existence of these
methods permits changing the implementation, and possibly enables more efficientoperations.

9. T / F In a class that implements animmutable ADT, the representation should never change (after
the constructor is exited).

Benevolent side effects may change the concrete representation withoutaffecting the abstract value.

10. T / F When the user passes an argument that violates the precondition, it is helpful to throw an
exception and to document this behavior in the throws clause of the specification.

It is helpful to throw the exception, butnot to document it in the throws clause — that would make
the specification inconsistent, as it would specify behavior when the precondition is not satisfied.

Recall that at a call sitex.f(y) , an illegal value ofy can violate the method precondition off . Assume that
there are no errors in the code that implementsx ’s class, and thatx satisfies the rep invariant.

11. T / F At a call sitex.f(y) , it is possible for a value ofx to violate the method precondition off .

Suppose that there are two different implementations C1 and C2 of a given ADT, and the implementations
have different representation invariants.

12. T / F It is a violation of the abstraction barrier for client code to intermix objects of type C1 and
C2 in computations, or to intermix them in collections such asList .

13. T / F It is a violation of the abstraction barrier for the code of class C1 to make callsagainst an
object of class C2.

2

Initials: Solutions 2 MULTIPLE CHOICE (4 POINTS EACH)

2 Multiple choice (4 points each)

14. Anequals method must satisfy which of the following properties? (Circle all that apply.)

(a) atomicity

(b) consistency withhashCode

(c) consistency withtoString

(d) no side effects to the abstraction

(e) no side effects to the rep

(f) reflexivity

(g) symmetry

(h) transitivity

consistency with hashCode, no side effects to the abstraction, reflexivity,symmetry, transitivity

15. Why is it valuable to formally compare two specifications to one another? (Circle all that apply.)

(a) To determine whether the implementation is correct.

(b) To determine whether one ADT is a true subtype of another.

(c) To determine whether a procedure satisfying one can be substituted for a procedure satisfying
the other.

(d) To determine which one is more elegant.

(e) To determine which one is more appropriate for use by a client.

(f) As part of the process of weakening one of the specifications.

B,C

16. An IllegalArgumentException must be thrown when (circle all that apply):

(a) A non-null parameter violates the @requires clause of the method

(b) A null parameter violates the @requires clause of the method

(c) The object state is inappropriate for method invocation

(d) None of the above

None of the above

17. Suppose that specification S1 differs from specification S2 in that S1has a strictly stronger precon-
dition than S2, and S1 has a strictly stronger postcondition. What relations between S1 and S2 are
possible? (Circle all that apply.)

(a) S1 may be stronger than S2

(b) S1 may be weaker than S2

(c) S1 may have the same strength as S2

(d) None of the above.

None of the above.

3

Initials: Solutions 3 COMPARING IMPLEMENTATIONS AND SPECIFICATIONS

3 Comparing implementations and specifications

18. (6 points) Consider the following specifications for a procedure thattakes an integer as an argument:

(a) returns an integer≥ its argument

(b) returns a non-negative integer≥ its argument

(c) returns argument + 1

(d) returns argument2

(e) returnsInteger.MAX VALUE

Consider these implementations:

(i) return arg * 2;

(ii) return Math.abs(arg);

(iii) return arg + 5;

(iv) return arg * arg;

(v) return Integer.MAX VALUE;

Place a check mark in each box for which the implementation satisfies the specification. If the imple-
mentation does not satisfy the invariant, leave the box blank.

Ignore overflow.

Specification
Impl. (a) (b) (c) (d) (e)

(i)
(ii) yes yes
(iii) yes
(iv) yes yes yes
(v) yes yes yes

4

Initials: Solutions 3 COMPARING IMPLEMENTATIONS AND SPECIFICATIONS

19. (8 points) Consider the following four specifications fordouble log(double x) , a method that
returns the natural logarithm of the inputx :

A @requires x > 0
@return y such that |eˆy - x| <= 0.1

B @return y such that |eˆy - x| <= 0.001
@throws IllegalArgumentException if x <= 0

C @requires x > 0
@return y such that |eˆy - x| <= 0.001

D @return y such that |eˆy - x| <= 0.001 if x > 0
and Double.NEGATIVE_INFINITY if x <= 0

For each of the following pairs of specifications, circle the stronger specification, or circle “neither”
if the two specifications are either equivalent or incomparable.

(i) A B neither

(ii) A C neither

(iii) A D neither

(iv) B C neither

(v) B D neither

(vi) C D neither

5

Initials: Solutions 4 SHORT ANSWER

4 Short answer

20. (3 points) Write two words that describe when (that is, under what circumstances) an implementation
should check preconditions.

(a) inexpensive

(b) convenient

(c) debugging

“Before” and “after” a method body could be acceptable answers for arep invariant , but “after”
does not make sense for a precondition.

21. (4 points) How, if at all, are the RI and the AF related? Answer in 1 sentence.

The domain of the AF is objects that satisfy the RI.

22. (4 points) Write the full transition relation for the following specification:

requiresx > 2
returnsy such thaty ≥ x
int anyGte(int x)

. . .

. . . , 〈1,−1〉, 〈1,0〉, 〈1,1〉, . . . ,〈1,RuntimeException〉, . . . ,〈1, infinite loop〉, . . .

. . . , 〈2,−1〉, 〈2,0〉, 〈2,1〉, . . . ,〈2,RuntimeException〉, . . . ,〈2, infinite loop〉, . . .
〈3,3〉, 〈3,4〉, 〈3,5〉, . . .
〈4,4〉, 〈4,5〉, 〈4,6〉, . . .
. . .

23. (4 points) In no more than 2 sentences, what is the difference between verification and validation?

Verification is the process of determining whether the implementation satisfies the specification.
Validation is the process of determining whether the specification meets the functional (user) re-
quirements of the system — whether it is fit for use.

24. (5 points) In 1 sentence each, state the two key limitations of Java constructors and why each are a
limitation.

(a) Constructors always return a new object, but for both space and time efficiency it can be
desirable to re-use objects, as in the interning design pattern.

(b) Constructors always return an object of the requested type, never a subtype, which is incon-
venient when clients need a particular type.

6

Initials: Solutions 4 SHORT ANSWER

25. (8 points) A general way to generate tests is to divide the input domain intodistinct partitions, then
choose one input from each domain.

(a) In one sentence, what property should be true ofeach partition?

Each partition is uniform with respect to failure; that is, the program shouldeither fail for
every input in the partition, or succeed for every input in the partition.
Partial credit was given for mentioning heuristics, such as code coverage — but recall that
those heuristics are intended to approximate the real answer given here. The theory behind
partition testing explains why those heuristics tend to work.
Note that this question asked for a property of each partition, not a property of the set of
partitions. Also, saying that the partitions should be distinct and exhaustive ismerely restating
the definition.

(b) In one sentence, explain why violating that property can mean that the test suite fails to detect
(some) errors.

If a failing input exists, but every partition contains at least one succeeding input (which
means that some partition contains both types of input), then the arbitrary choice could choose
only succeeding tests and miss errors.

(c) In one sentence, state how the property can be violated but the suite is still guaranteed to find all
errors.

If, for every distinct defect in the program, some partition contains only inputs that fail be-
cause of that defect, then the test suite will catch all defects.
A common incorrect answer is to test all inputs. This is guaranteed to find all errors, but it
redefines the partitions to have one input per partition, in which case the uniformity condition
on each partition is satisfied.
It isn’t right to answer that you could over-partition, so that the partitionsyou use are sub-
partitions of the coarsest (most efficient) partitions that satisfy the uniformityrequirement.
Another incorrect answer was boundary testing. This is a heuristic that aims to over-partition,
but it provides no guarantees.

26. (6 points) In one sentence each, give the two most important reasonsthat throwing an exception is
preferable to returning a special value.

(a) A special value may be hard to distinguish from a real result.

(b) Special values are error-prone: the programmer may forget to check them.

(c) An exception can carry arbitrary data that may be useful in describing the problem.

(d) It can simplify the program logic.

Many people said an exception implements the “fail fast” paradigm. But special values can do this
just as easily: the library returns a special value as soon as there is a problem, and the client checks
for it. Likewise, exceptions do not prevent any more (or fewer) problems than special values, if each
is used correctly.

By contrast, exceptions give you “guaranteed fail”, which is different but also valuable.

27. (4 points) In the PS3 and PS4 testing file format, a single test file can contain multiple differently-
named graphs. In one sentence, give a reason why the staff chose to have multiple distinct graphs in
a single test file. (Hint: the answer is not “to reduce the number of files in the test suite.”)

7

Initials: Solutions 4 SHORT ANSWER

This enables testing whether the class uses static variables, suffers representation exposure, or has
other undesired dependences/interference between distinctGraph objects.

An inadequate answer is that it tests whether the same node is in multiple graphs.Nodes associated
with the same name might be in multiple graphs, but that is a different matter.

The test file format does not permit comparison of Graph objects, so that isnot the reason either.

28. (6 points) PS4 uses, as its example graph, a map of roads on the UW campus. In one sentence each,
give a reason that this is a good idea for testing, and a reason it is a bad idea.

Obviously, you are going to do testing with some kind of small node and edge data; the question
here is about the appropriateness of the UW campus data.

(a) Good:It leverages our intuitions about what paths are the right ones between any two points.

An incorrect answer is that it is like the real-world data that the system will eventually use.
The purpose of testing is to create test cases that reveal errors, not tosimulate use.

(b) Bad:Reality may not contain (or it may be difficult to find) the corner cases that you wish to
test, such as multiple paths of similar length, longer paths with a smaller number of segments,
each type of turn, each type of road, multiple ZIP codes, etc.

Another acceptable answer is that creating a realistic graph requires a lotof work to have it
correspond closely enough to reality. If the graph is only somewhat like reality, then testers’
intuitions may mislead them.

An incorrect answer is that a larger and more complex graph is needed. Testing on complex
data just makes it harder for you to understand the errors! It is better for you to carefully
craft specific test cases, rather than to throw heaps of data at your program.

8

