
Automated Program Verification

Winter 2011

Guaranteeing Program Correctness

• Programs should behave how we want them to

– Example: not crashing with an unexpected

exception

• To guarantee this:

1. Specify what a program’s behavior should be

2. Check / enforce that a program satisfies the

specification

Method Specifications

• Preconditions: must be true when the method

is called

• Postconditions: must be true when the

method exits if the preconditions were met

– Return value

– Exceptions that are raised and under what

conditions

– Side-effects

REMEMBER: What does it mean for a method to have stronger

preconditions than another method? Stronger postconditions?

Representation Invariants

• Must be true at the end of a constructor

• Must be true before and after every public

method

• In CSE331, you check these at runtime with a

checkRep() method

Banking Example

public class BankingExample{

//RI: balance != null

// 0 <= balance <= MAX_BALANCE

private Integer balance;

//@effects this.balance = 0

public BankingExample { balance = 0; }

//@requires amount != null

//@requires 0 < amount && amount + balance < MAX_BALANCE

//@ensures new this.balance = old this.balance + amount

public void credit(Integer amount) { balance += amount; }

}

Has Specs: ☺☺☺☺

Specs True: ???

Banking Example: Runtime Assertions

public class BankingExample{
//RI: balance != null
// 0 <= balance <= MAX_BALANCE
private Integer balance;

//@effects this.balance = 0
public BankingExample { balance = 0; }

//@requires amount != null
//@requires 0 < amount && amount + balance < MAX_BALANCE
//@ensures new this.balance = old this.balance + amount
public void credit(Integer amount) {

checkRepcheckRepcheckRepcheckRep(); (); (); (); balance += amount; checkRepcheckRepcheckRepcheckRep(); (); (); ();
}

private void private void private void private void checkRepcheckRepcheckRepcheckRep(){(){(){(){
assert(balance != null);assert(balance != null);assert(balance != null);assert(balance != null);
assert(0 <= balance && balance <= MAX_BALANCE);assert(0 <= balance && balance <= MAX_BALANCE);assert(0 <= balance && balance <= MAX_BALANCE);assert(0 <= balance && balance <= MAX_BALANCE);

}}}}
}

Run-time checks that the program satisfies the specification

Banking Example: Pluggable Type Checking

public class BankingExample{

//RI: balance != null

// 0 <= balance <= MAX_BALANCE

private /*@/*@/*@/*@NonNullNonNullNonNullNonNull*/ */ */ */ Integer balance;

//@effects this.balance = 0

public BankingExample { balance = 0; }

//@requires amount != null

//@requires 0 < amount && amount + balance < MAX_BALANCE

//@ensures new this.balance = old this.balance + amount

public void credit(/*@/*@/*@/*@NonNullNonNullNonNullNonNull*/ */ */ */ Integer amount) { . . . }

private void checkRep(){

assert(balance != null);

assert(0 <= balance && balance <= MAX_BALANCE);

}

} Unnecessary! The type checker enforces this for us!

Banking Example: Formal Proof

public class BankingExample{

//RI: balance != null

// 0 <= balance <= MAX_BALANCE

private Integer balance;

//@effects this.balance = 0

public BankingExample { balance = 0; }

//@requires amount != null

//@requires 0 < amount && amount + balance < MAX_BALANCE

//@ensures new this.balance = old this.balance + amount

public void credit(Integer amount) { balance += amount; }

}

Manually find weakest preconditions, inductive

properties, and loop invariants (as in PS5)

Specification Approach Comparison

Method Checked at

compile-time

Automatically

checked

Documentation

consistency

Express all

properties

Assertions ���� ☺☺☺☺ ���� ☺☺☺☺

Pluggable

Type

Checking

☺☺☺☺ ☺☺☺☺ ���� ����

Formal

Proofs
☺☺☺☺ ���� ☺☺☺☺ ☺☺☺☺

Automated

formal proofs
☺☺☺☺ ☺☺☺☺ ☺☺☺☺ ☺☺☺☺

Expressing Rich Specifications

• Need to express conditions such as
– this.balance = old this.balance + amount

– returns x if x >= 0 and -x otherwise

– all elements of the array are less than 5

in a way that a computer can understand and
(hopefully) check automatically

• Our expression language needs support for:

– logic (e.g., if / else, quantification)

– programming concepts (return values, side-
effects)

Java Modeling Language (JML)

• Formal language for writing specifications

• Advantages / disadvantages of using a formal language
instead of natural language:
– Precision

– Expressiveness

• Write in program comments; numerous tools can use
the specification to:
– Generate documentation

– Automatically generate unit tests

– Check that the code meets the specification

• Website: http://www.eecs.ucf.edu/~leavens/JML/

CSE331 vs. JML Specifications

CSE331 Specification

requires

modifies

returns

effects

throws

RI:

JML Specification

@requires <expr>

@modifies <expr>, <expr>

@pure

@ensures <expr>

@exsures (Exception) <expr>

@invariant <expr>

M
E

T
H

O
D

C
LA

S
S

(Method does not modify

any member vars)

What is true when the method throws the given

exception. E.g.,

@exsures (IllegalArgumentException) x == null

JML Expressions

Expression Meaning

a ==> b a implies b

a <==> b a is true if, and only if, b is true; same as a == b

\result the return value of the method

\old(<expr>) Refers to the value of <expr> at the entry of the method

\forall <decl>; <expr> Universal quantification

a && b Just like in Java

a || b Just like in Java

!a Just like in Java

Banking Example in JML

public class BankingExample{

/*@spec_public */ private Integer balance;

//@invariant balance != null

//@invariant 0 <= balance && balance <= MAX_BALANCE

//@ensures this.balance = 0

public BankingExample { balance = 0; }

//@requires amount != null

//@requires 0 < amount && amount + balance < MAX_BALANCE

//@modifies balance

//@ensures this.balance = \old(this.balance) + amount

public void credit(Integer amount) {…}

}

States that variable can be used in public

specifications, even though it is private

\result example

boolean foo(int x, int y){

if (x < y){

return true;

}else{

return false;

}

}

//@ensures (x < y) == \result

//@ensures (x < y) ==> (\result == true)
//@ensures (x >= y) ==> (\result == false)

//@ensures (x < y) <==> (\result == true)

//@ensures (x < y) <==> \result

Which post-condition is correct?

They’re all correct!

Universal Quantification

• Used to express that a fact holds over a range of
values:

\forall <decl>; <expr>

• Example:
\forall int i;

(0 <= i && i < arr.length) ==> arr[i] < 5

Use ==> (implication) to guard against non-sense values

• Implication truth-table:

b = true b = false

a = true TRUE FALSE

a = false TRUE TRUE

a ==> b

Extended Static Checking

• ESC/Java2 takes a program description in JML

and a Java program and determines:

– If the program meets the specification

– If the program might throw an unexpected

exception (e.g., ArrayIndexException)

• You don’t have to write any proofs ☺☺☺☺

• Like pluggable type-checkers, some perfectly

good programs won’t pass (false alarms)

ESC/Java Demo

VeriWeb: A Better (?) Interface to ESC/Java2

• Runs in web browser: no setup required for

users

• Drag and drop interface for writing pre- and

post- conditions

• You work on a method at a time;

representation invariants are determined

implicitly

VeriWeb Demo

Conclusion

• JML is a language for writing Java program
specifications

• ESC/Java2 verifies JML specifications

• VeriWeb is a web interface to ESC/Java2

• Other tools can use JML specs to:

– Generate documentation

– Generate tests

– Statically check whether or not the program
meets the specification

