Automated Program Verification

Winter 2011



Guaranteeing Program Correctness

* Programs should behave how we want them to

— Example: not crashing with an unexpected
exception

* To guarantee this:
1. Specify what a program’s behavior should be

2. Check / enforce that a program satisfies the
specification



Method Specifications

 Preconditions: must be true when the method
is called

* Postconditions: must be true when the
method exits if the preconditions were met
— Return value

— Exceptions that are raised and under what
conditions

— Side-effects

REMEMBER: What does it mean for a method to have stronger
preconditions than another method? Stronger postconditions?




Representation Invariants

e Must be true at the end of a constructor

* Must be true before and after every public
method

* |n CSE331, you check these at runtime with a
checkRep() method



Banking Example

public class BankingExample{

//RI: balance != null Has Specs: ©
private Integer balance;

//@effects this.balance = 0
public BankingExample { balance = 0; }

//@requires amount != null

//@requires 0 < amount && amount + balance < MAX_BALANCE
//@ensures new this.balance = old this.balance + amount
public void credit(Integer amount) { balance += amount; }



Banking Example: Runtime Assertions

public class BankingExample{
//RI: balance != null
// 0 <= balance <= MAX_BALANCE
private Integer balance;

//@effects this.balance = 0
public BankingExample { balance = 0; }

//@requires amount != null
//@requires 0 < amount && amount + balance < MAX_BALANCE
//@ensures new this.balance = old this.balance + amount
public void credit(Integer amount) {

checkrRep(); balance += amount; checkRep(Q);
}

private void checkrep(){
assert(balance !'= null);
assert(0 x= balance && balance <= MAX_BALANCE);

Run-time checks that the program satisfies the specification




Banking Example: Pluggable Type Checking

public class BankingExample{
//RI: balance != null
// 0 <= balance <= MAX_BALANCE
private /*@NonNull*/ Integer balance;

//@effects this.balance = 0
public BankingExample { balance = 0; }

//@requires amount != null

//@requires 0 < amount && amount + balance < MAX_BALANCE
//@ensures new this.balance = old this.balance + amount
public void credit(/*@NonNull*/ Integer amount) { . . . }

private void checkrep(){

assert <= balance & & balance <= MAX_BALANCE);

1 Unnecessary! The type checker enforces this for us!




Banking Example: Formal Proof

public class BankingExample{
//RI: balance != null
// 0 <= balance <= MAX_BALANCE
private Integer balance;

//@effects this.balance = 0
public BankingExample { balance = 0; }

//@requires amount != null

//@requires 0 < amount && amount + balance < MAX_BALANCE
//@ensures new this.balance = old this.balance + amount
public void credit(Integer amount) { balance += amount; }

Manually find weakest preconditions, inductive
properties, and loop invariants (as in PS5)



Specification Approach Comparison

Method Checked at Automatically | Documentation Express all
compile-time checked consistency properties

Assertions ® © ® ©

Pluggable © © @ ®

Type

Checking

Formal © ® © ©

Proofs

Automated © © © ©

formal proofs




Expressing Rich Specifications

* Need to express conditions such as

— this.balance = old this.balance + amount
— returns x if x >= 0 and -x otherwise
— all elements of the array are less than 5

in @ way that a computer can understand and
(hopefully) check automatically

* Our expression language needs support for:
— logic (e.g., if / else, quantification)

— programming concepts (return values, side-
effects)



Java Modeling Language (JML)

Formal language for writing specifications
Advantages / disadvantages of using a formal language
instead of natural language:

— Precision

— Expressiveness

Write in program comments; numerous tools can use
the specification to:

— Generate documentation

— Automatically generate unit tests

— Check that the code meets the specification

Website: http://www.eecs.ucf.edu/~leavens/IML/




METHOD

CLASS

CSE331 vs. JML Specifications

CSE331 Specification JML Specification

requires < > @requires <expr>
modifies \{ @modifies <expr>, <expr>
@pure | (Method does not modify
any member vars)
returns
effects @ensures <expr>

throws

@exsures (Exception) <expr>

What is true when the method throws the given
exception. E.g.,
@exsures (lllegalArgumentException) x == null

_____________________________________________________________

RI: < > @invariant <expr>



JML Expressions

Expression Meaning

a==>b aimplies b

a<==>Db ais true if, and only if, b is true; same as a ==

\result the return value of the method

\old(<expr>) Refers to the value of <expr> at the entry of the method

\forall <decl>; <expr> | ynjyersal quantification

a&&b Just like in Java

all|lb Just like in Java

la Just like in Java




Banking Example in JML

States that variable can be used in public
specifications, even though it is private

public class Bankj ple{
/*@spec_public */ private Integer balance;
//@invariant balance != null

//@invariant 0 <= balance && balance <= MAX_BALANCE

//@ensures this.balance = 0
public BankingExample { balance = 0; }

//@requires amount != null

//@requires 0 < amount && amount + balance < MAX_BALANCE
//@modifies balance

//@ensures this.balance = \old(this.balance) + amount
public void credit(Integer amount) {..}



\result example

boolean foo(int x, int y){

if (x < y){
return true;
telse{

return false; They’re all correct!

}

Which post-condition is correct?

//@ensures (X < y) ==> (\result == true)
//@ensures (x >= y) ==> (\result == false)

//@ensures (X < y) <==> (\result == true)

//@ensures (X < y) <==> \result

//@ensures (X < y) == \result




Universal Quantification

* Used to express that a fact holds over a range of
values:

\forall <decl>; <expr>

* Example:

\forall int 1i;
(0 <=1 && 1 < arr.length) ==> arr[i1] < 5

Use ==> (implication) to guard against non-sense values
* |mplication truth-table:

a ==>b
b =true b = false
a=true | TRUE FALSE

a=false | TRUE TRUE




Extended Static Checking

* ESC/Java2 takes a program description in JML
and a Java program and determines:

— If the program meets the specification

— |f the program might throw an unexpected
exception (e.g., ArraylndexException)

* You don’t have to write any proofs ©

* Like pluggable type-checkers, some perfectly
good programs won'’t pass (false alarms)



ESC/Java Demo



VeriWeb: A Better (?) Interface to ESC/Java2

* Runs in web browser: no setup required for
users

* Drag and drop interface for writing pre- and
post- conditions

* You work on a method at a time;
representation invariants are determined
implicitly



VeriWeb Demo



Conclusion

JML is a language for writing Java program
specifications

ESC/Java?2 verifies JML specifications
VeriWeb is a web interface to ESC/Java2

Other tools can use JML specs to:
— Generate documentation
— Generate tests

— Statically check whether or not the program
meets the specification



