
Reasoning about code

CSE 331

University of Washington



Reasoning about code

Determine what facts are true during execution

x > 0

for all nodes n:  n.next.previous == n

array a is sorted

x + y == z

if  x != null, then  x.a > x.b

Applications:

Ensure code is correct (via reasoning or testing)

Understand why code is incorrect



Forward reasoning

You know what is true before running the code
What is true after running the code?

Given a precondition, what is the postcondition?
Example:

// precondition:  x is even
x = x + 3;
y = 2x;
x = 5;
// postcondition:  ??

Application:
Rep invariant holds before running code
Does it still hold after running code?



Backward reasoning

You know what you want to be true after running the code
What must be true beforehand in order to ensure that?

Given a postcondition, what is the corresponding 
precondition?

Example:
// precondition:  ??
x = x + 3;
y = 2x;
x = 5;
// postcondition:  y > x

Application:
(Re-)establish rep invariant at method exit:  what requires?
Reproduce a bug:  what must the input have been?
Exploit a bug



SQL injection attack

Server code bug:  SQL query constructed using unfiltered user 
input
query = “SELECT * FROM users ”

+ “WHERE name=‘” + userInput + “’;”;

User inputs:    a’ or ‘1’=‘1

Result:  
query ⇒⇒⇒⇒ SELECT * FROM users

WHERE name=‘a’ or ‘1’=‘1’;

Query returns information about all users

Program logic is supposed to scrub user inputs
Does it?

http://xkcd.com/327/



Forward vs. backward reasoning

Forward reasoning is more intuitive for most people

Helps you understand what will happen (simulates the 
code)

Introduces facts that may be irrelevant to goal

Set of current facts may get large

Takes longer to realize that the task is hopeless

Backward reasoning is usually more helpful

Helps you understand what should happen

Given a specific goal, indicates how to achieve it

Given an error, gives a test case that exposes it



Reasoning about code statements

Goal:  Convert assertions about programs into logic 
General plan

Eliminate code a statement at a time
Rely on knowledge of logic and types

There is a (forward and backward) rule for each 
statement in the programming language
Loops have no rule:  you have to guess a loop invariant

Jargon:  P {code} Q
P and Q are logical statements (about program values)
code is Java code
“P {code} Q” means “if P is true and you execute code, 

then Q is true afterward”
Is this notation good for forward or for backward reasoning?



Reasoning:  putting together statements 

assert x >= 0;

// x ≥ 0

z = 0;
// x ≥ 0  &  z = 0

if (i != 0) {
// x > 0  &  z = 0

z = x;

// x > 0  &  z = x

} else {
// x = 0  &  z = 0

z = z + 1;

// x = 0  &  z = 1

}
// x ≥ 0  &  z > 0

assert z > 0;



Forward reasoning with a loop

assert x >= 0;

// x ≥ 0

i = x;
// x ≥ 0  &  i = x

z = 0;
// x ≥ 0  &  i = x  &  z = 0

while (i != 0) {
// ???

z = z + 1;

i = i – 1;

// ???

}
// x ≥ 0  &  i = 0  &  z = x

assert x == z;

Infinite number of paths through this code

How do you know that the overall conclusion is correct?

Induction on the length of the computation



Assignment

// precondition: ??
x = e;

// postcondition: Q

Precondition = Q with all (free) occurrences of x replaced by e
Examples:

// assert:  ??
y = x + 1;

// assert y > 0

Precondition =  (x+1) > 0

Notation:  wp for “weakest precondition”
wp(“x=e;”, Q) = Q with x replaced by e

// assert:  ??
z = z + 1;

// assert z > 0

Precondition =  (z+1) > 0

Backward reasoning:



Method calls

// precondition: ??
x = foo();

// postcondition: Q

If the method has no side effects: just like ordinary assignment
// precondition: ??                                 (y = 22 or y = -22) and (x = anything)
x = Math.abs(y);

// postcondition: x = 22

If it has side effects:  an assignment to every var in modifies
Use the method specification to determine the new value

// precondition:  ??                                z+1 = 22
incrementZ();  // spec: zpost = zpre + 1

// postcondition: z = 22



Composition (statement sequences; blocks)

// precondition: ??

S1; // some statement

S2; // another statement

// postcondition:  Q

Work from back to front

Precondition = wp(“S1; S2;”, Q) = wp(“S1;”, wp(“S2;”, Q))

Example:

// precondition: ??

x = 0;

y = x+1;

// postcondition: y > 0



If statements

// precondition:  ??

if (b) S1 else S2

// postcondition: Q

Do case analysis:

wp(“if (b) S1 else S2”, Q)

= (      b ⇒ wp(“S1”, Q) 

∧ ¬b ⇒ wp(“S2”, Q)  )

= (      b ∧ wp(“S1”, Q) 

∨ ¬b ∧ wp(“S2”, Q) 

(Note no substitution in the condition.)



If statement example

// precondition: ??
if (x < 5) {

x = x*x;
} else {

x = x+1; 
}

// postcondition:  x ≥ 9

Precondition

= wp(“if (x<5) {x = x*x;} else {x = x+1}”, x ≥ 9)
= (x < 5 ∧ wp(“x=x*x”, x ≥ 9)) ∨ (x ≥ 5 ∧ wp(“x=x+1”, x ≥ 9))

= (x < 5 ∧ x*x ≥ 9)            ∨ (x ≥ 5 ∧ x+1 ≥ 9)

= (x ≤ -3) ∨ (x ≥ 3 ∧ x < 5) ∨ (x ≥ 8)

-4 -3

-4

-2 -1 0 721 4 653 8 9



Reasoning about loops

A loop represents an unknown number of paths

Case analysis is problematic

Recursion presents the same problem as loops

Cannot enumerate all paths

This is what makes testing and reasoning hard



Reasoning about loops:

values and termination
// assert x ≥≥≥≥ 0 & y = 0
while (x != y) {

y = y + 1;
}

// assert x = y

Does this loop terminate?
1) Pre-assertion guarantees that x ≥ y
2) Every time through loop

x ≥ y holds – and if body is entered, x > y
y is incremented by 1
x is unchanged
Therefore, y is closer to x   (but x ≥ y still holds)

3) Since there are only a finite number of integers between x and y, y 
will eventually equal x

4) Execution exits the loop as soon as x = y



Understanding loops by induction

We just made an inductive argument

Inducting over the number of iterations

Computation induction

Show that conjecture holds if zero iterations

Show that it holds after n+1 iterations

(assuming that it holds after n iterations)

Two things to prove

Some property is preserved (known as “partial correctness”)

Loop invariant is preserved by each iteration

The loop completes (known as “termination”)

The “decrementing function” is reduced by each iteration

and cannot be reduced forever



How to choose a loop invariant, LI

// assert P
while (b) S;

// assert Q

Find an invariant, LI, such that
1. P ⇒ LI                        // true initially

2. LI & b {S} LI               // true if the loop executes once

3. (LI & ¬b) ⇒ Q          // establishes the postcondition

It is sufficient to know that if loop terminates, Q will hold.

Finding the invariant is the key to reasoning about loops.

Inductive assertions is a complete method of proof:
If a loop satisfies pre/post conditions, then there exists an 

invariant sufficient to prove it



Loop invariant for the example

//assert x ≥≥≥≥ 0 & y = 0
while (x != y) {

y = y + 1;
}

//assert x = y

A suitable invariant:

LI = x ≥ y

1. x ≥ 0  &  y = 0 ⇒ LI                  // true initially

2. LI &  x ≠ y {y = y+1;} LI             // true if the loop executes once

3. (LI &  ¬(x ≠ y))   ⇒ x = y         // establishes the postcondition



Total correctness via well-ordered sets

We have not established that the loop terminates

Suppose that the loop always reduces some variable’s 
value.  Does the loop terminate if the variable is a
– Natural number?

– Integer?

– Non-negative real number?

– Boolean?

– ArrayList?

The loop terminates if the variable values are (a subset 
of) a well-ordered set
– Ordered set

– Every non-empty subset has least element



Decrementing function

Decrementing function D(X)
Maps state (program variables) to some well-ordered set

Tip:  always use the natural numbers

This greatly simplifies reasoning about termination

Consider:  while (b) S;

We seek D(X), where X is the state, such that
1. An execution of the loop reduces the function’s value:

LI & b {S} D(Xpost) < D(Xpre) 

2. If the function’s value is minimal, the loop terminates:
(LI & D(X) = minVal) ⇒ ¬b



Proving termination

// assert x ≥≥≥≥ 0 & y = 0

// Loop invariant: x ≥≥≥≥ y

// Loop decrements:  (x-y)
while (x != y) {

y = y + 1;
}

// assert x = y

Is this a good decrementing function?

1. Does the loop reduce the decrementing function’s value?
// assert (y ≠≠≠≠ x); let dpre = (x-y)
y = y + 1;
// assert (xpost – ypost) < dpre

2. If the function has minimum value, does the loop exit?

(x ≥≥≥≥ y & x - y = 0) ⇒⇒⇒⇒ (x = y)



Choosing loop invariants

For straight-line code, the wp (weakest precondition) function 
gives us the appropriate property

For loops, you have to guess:
The loop invariant

The decrementing function

Then, use reasoning techniques to prove the goal property

If the proof doesn't work:
Maybe you chose a bad invariant or decrementing function

Choose another and try again

Maybe the loop is incorrect
Fix the code

Automatically choosing loop invariants is a research topic



When to use code proofs for loops

Most of your loops need no proofs
for (String name : friends) { ... }

Write loop invariants and decrementing 
functions when you are unsure about a loop

If a loop is not working:

Add invariant and decrementing function if missing

Write code to check them

Understand why the code doesn't work

Reason to ensure that no similar bugs remain


