Understanding ADTs

CSE 331
University of Washington

Ways to get your design right

The hard way

Start hacking

When something doesn't work, hack some more

How do you know it doesn't work?

Need to reproduce the errors your users experience

Apply caffeine liberally

The easier way

Plan first (specs, system decomposition, tests, ...)

Less apparent progress upfront

Faster completion times

Better delivered product

Less frustration

Ways to verify your code

The hard way: hacking Make up some inputs If it doesn't crash, ship it When it fails in the field, attempt to debug An easier way: systematic testing Reason about possible behaviors and desired outcomes Construct simple tests that exercise all behaviors Another way that can be easy: reasoning Prove that the system does what you want Rep invariants are preserved Implementation satisfies specification Proof can be formal or informal (we will be informal) Complementary to testing

Uses of reasoning

Goal: correct code

- Verify that rep invariant is satisfied
- Verify that the implementation satisfies the spec
- Verify that client code behaves correctly
 Assuming that the implementation is correct

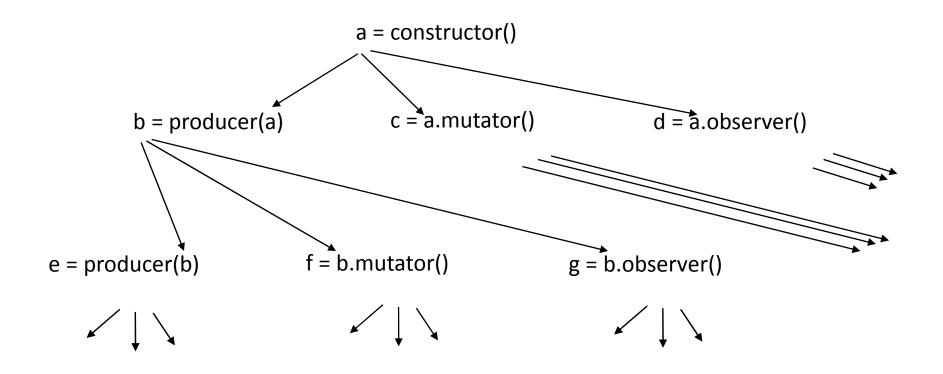
Goal: Demonstrate that rep invariant is satisfied

- Exhaustive testing
 - Create every possible object of the type
 - Check rep invariant for each object
 - Problem: impractical
- Limited testing
 - Choose representative objects of the type
 - Check rep invariant for each object
 - Problem: did you choose well?
- Reasoning
 - Prove that all objects of the type satisfy the rep invariant
 - Sometimes easier than testing, sometimes harder
 - Every good programmer uses it as appropriate

All possible objects (and values) of a type

- Make a new object
 - constructors
 - producers
- Modify an existing object
 - mutators
 - observers, producers (why?)
- Limited number of operations, but infinitely many objects
 - Maybe infinitely many values as well

Examples of making objects



Infinitely many possibilities

We cannot perform a proof that considers each possibility case-by-case

Solution: induction

Induction: technique for proving infinitely many facts using finitely many proof steps

For constructors ("basis step")

Prove the property holds on exit

For all other methods ("inductive step")

Prove that:

if the property holds on entry, then it holds on exit

If the basis and inductive steps are true:

There is no way to make an object for which the property does not hold

Therefore, the property holds for all objects

A counter class

```
// spec field: count
// abstract invariant: count ≥ 0
class Counter {
   // counts up starting from 0
   Counter();
   // returns a copy of this counter
   Counter clone();
   // increments the value that this represents:
   // count<sub>post</sub> = count<sub>pre</sub> + 1
   void increment();
   // returns count
   BigInteger getValue();
}
```

Is the abstract invariant satisfied by these method specs? Proof by contradiction: where was the invariant first violated?

Inductive proof

- Base case: invariant is satisfied by constructor
- Inductive case:
 - If invariant is satisfied on entry to clone, then invariant is satisfied on exit
 - If invariant is satisfied on entry to increment, then invariant is satisfied on exit
 - If invariant is satisfied on entry to getValue, then invariant is satisfied on exit
- Conclusion: invariant is always satisfied

Inductive proof that x+1 > x

ADT: the natural numbers (non-negative integers)

- constructor: 0 (zero)
- producer: succ (successor: succ(x) = x+1)
- mutators: none
- observers: value

Axioms:

- 1. succ(0) > 0
- 2. $(\operatorname{succ}(i) > \operatorname{succ}(j)) \Leftrightarrow i > j$

Goal: prove that for all natural numbers x, succ(x) > x. Possibilities for x:

- -1. x is 0
 - succ(0) > 0 axiom #1
- 2. x is succ(y) for some y
 - succ(y) > y assumption
 - succ(succ(y)) > succ(y) axiom #2
 - succ(x) > x def of x = succ(y)

Outline for remainder of lecture

- 1. Prove that rep invariant is satisfied
- 2. Prove that client code behaves correctly (Assuming that the implementation is correct)

CharSet abstraction

```
// Overview: A CharSet is a finite mutable set of chars.
// effects: creates a fresh, empty CharSet
public CharSet ( )
// modifies: this
// effects: this<sub>post</sub> = this<sub>pre</sub> U {c}
public void insert (char c);
// modifies: this
// effects: this_{post} = this_{pre} - \{c\}
public void delete (char c);
// returns: (c \in this)
public boolean member (char c);
// returns: cardinality of this
public int size ( );
```

Implementation of CharSet

```
// Rep invariant: elts has no nulls and no duplicates
List<Character> elts:
public CharSet() {
  elts = new ArrayList<Character>();
public void delete(char c) {
  elts.remove(new Character (c));
public void insert(char c) {
  if (! member(c))
    elts.add(new Character(c));
public boolean member(char c) {
  return elts.contains(new Character(c));
```

Proof of CharSet representation invariant

Rep invariant: elts has no nulls and no duplicates

```
Base case: constructor
    public CharSet() {
        elts = new ArrayList<Character>();
    }
    This satisfies the rep invariant
Inductive step:
    For each other operation:
        Assume rep invariant holds before the operation
        Prove rep invariant holds after the operation
```

Inductive step, member

Rep invariant: elts has no nulls and no duplicates

```
public boolean member(char c) {
   return elts.contains(new Character(c));
}
```

contains doesn't change elts, so neither does member. Conclusion: rep invariant is preserved.

Why do we even need to check **member**?

After all, the specification says that it does not mutate set.

Reasoning must account for all possible arguments

It's best not to involve the specific values in the proof

Inductive step, delete

Rep invariant: elts has no nulls and no duplicates

```
public void delete(char c) {
  elts.remove(new Character(c));
}
```

List.remove has two behaviors:

- leaves elts unchanged, or
- removes an element.

Rep invariant can only be made false by adding elements.

Conclusion: rep invariant is preserved.

Inductive step, insert

Rep invariant: elts has no nulls and no duplicates

```
public void insert(char c) {
   if (! this.member(c))
      elts.add(new Character(c));
}

If c is in elts<sub>pre</sub>:
   elts is unchanged ⇒ rep invariant is preserved

If c is not in elts<sub>pre</sub>:
   new element is not null or a duplicate ⇒ rep invariant is preserved
```

Reasoning about mutations to the rep

Inductive step must consider all possible changes to the rep

A possible source of changes: representation exposure

If the proof does not account for this, then the proof is invalid

An important reason to protect the rep:

Compiler can help verify that there are no external changes

Induction for reasoning about uses of ADTs

- Induction on specification, not on code
- Abstract values (e.g., specification fields) may differ from concrete representation
- Can ignore observers, since they do not affect abstract state
 - How do we know that?
- Axioms
 - specs of operations
 - axioms of types used in overview parts of specifications

LetterSet (case-insensitive character set)

```
// A LetterSet is a mutable finite set of characters.
// No LetterSet contains two chars with the same lower-case representation.
// effects: creates an empty LetterSet
public LetterSet ( );
// Insert c if this contains no other char with same lower-case representation.
// modifies: this
// effects: this<sub>post</sub> = if (\exists c_1 \in this_{pre} s.t. toLowerCase(c_1) = toLowerCase(c))
                           then this_{pre}
//
                            else this<sub>pre</sub> U {c}
//
public void insert (char c);
// modifies: this
// effects: this _{post} = this _{pre} - {c}
public void delete (char c);
// returns: (c \in this)
public boolean member (char c);
// returns: |this|
public int size ();
```

Goal: prove that a large enough LetterSet contains two different letters

Prove: $|S| > 1 \Rightarrow (\exists c_1, c_2 \in S \text{ [toLowerCase}(c_1) \neq \text{toLowerCase}(c_2)])$ How might S have been made?

$$T \xrightarrow{T.insert(c)} S$$

$$T \xrightarrow{T.insert(c)} S = T$$

$$T \xrightarrow{T.insert(c)} S = T U \{c\}$$

Base case

Inductive case #1

Inductive case #2

Goal: prove that a large enough LetterSet contains two different letters

```
Prove: |S| > 1 \Rightarrow (\exists c_1, c_2 \in S \text{ [toLowerCase}(c_1) \neq \text{toLowerCase}(c_2)])
Two possibilities for how S was made: by the constructor, or by insert
Base case: S = { }, (S was made by the constructor):
     property holds (vacuously true)
Inductive case (S was made by a call of the form "T.insert(c)"):
     Assume: |T| > 1 \Rightarrow (\exists c_3, c_4 \in T \text{ [toLowerCase}(c_3) \neq \text{toLowerCase}(c_4)])
     Show: |S| > 1 \Rightarrow (\exists c_1, c_2 \in S \text{ [toLowerCase}(c_1) \neq \text{toLowerCase}(c_2)])
         where S = T.insert(c)
                    = "if (\exists c_5 \in T \text{ s.t. toLowerCase}(c_5) = \text{toLowerCase}(c))
                        then T else T U {c}"
The value for S came from the specification of insert, applied to T.insert(c):
     // modifies: this
     // effects: this _{post} = if (\exists c_1 \in S \text{ s.t. } toLowerCase(c_1) = toLowerCase(c))
                              then this pre
                              else this pre U {c}
     public void insert (char c);
(Inductive case is continued on the next slide.)
```

Goal: a large enough LetterSet contains two different letters.

Inductive case: S = T.insert(c)

Goal (from previous slide):

```
Assume: |T| > 1 \Rightarrow (\exists c_3, c_4 \in T \text{ [toLowerCase}(c_3) \neq \text{toLowerCase}(c_4)])

Show: |S| > 1 \Rightarrow (\exists c_1, c_2 \in S \text{ [toLowerCase}(c_1) \neq \text{toLowerCase}(c_2)])

where S = T.\text{insert}(c)

= "if (\exists c_5 \in T \text{ s.t. toLowerCase}(c_5) = \text{toLowerCase}(c))

then T else T U \{c\}"
```

Consider the two possibilities for S (from "if ... then T else T U {c}"):

- 1. If S = T, the theorem holds by induction hypothesis (The assumption above)
- 2. If $S = T \cup \{c\}$, there are three cases to consider:
 - |T| = 0: Vacuous case, since hypothesis of theorem ("|S| > 1") is false
 - |T| ≥ 1: We know that T did not contain a char of toLowerCase(h),
 so the theorem holds by the meaning of union
 - Bonus: |T| > 1: By inductive assumption, T contains different letters,
 so by the meaning of union, T U {c} also contains different letters

Conclusion

The goal is correct code

A proof is a powerful mechanism for ensuring correctness Formal reasoning is required if debugging is hard Inductive proofs are the most effective in computer science

Types of proofs:

- Verify that rep invariant is satisfied
- Verify that the implementation satisfies the spec
- Verify that client code behaves correctly