
Introduction to CSE 331

Software Design & Implementation

Winter 2011

Course staff

• Lecturer:

– Michael Ernst

• TAs:

– Brian Burg

– Jacob Nicholson

– William Pitts

Ask us for help!

Main topic: Managing complexity

• Abstraction and specification
– Procedural, data, control flow

– Why they are useful and how to use them

• Writing, understanding, and reasoning about code
– The examples are in Java, but the issues are more general

– Object-oriented programming

• Program design and documentation
– What makes a design good or bad (example: modularity)

– The process of design and design tools

• Pragmatic considerations
– Testing

– Debugging and defensive programming

– Managing software projects

The goal of system building

• To create a correctly functioning artifact!

• All other matters are secondary

– Many of them are essential to producing a correct

system

• We insist that you learn to create correct

systems

– This is hard (but fun and rewarding!)

Why is building good software hard?

• Large software systems are enormously complex
– Millions of “moving parts”

• People expect software to be malleable
– After all, it’s “only software”

– Software mitigates the deficiencies of other components

• We are always trying to do new things with software
– Relevant experience often missing

• Software engineering is about:
– Managing complexity

– Managing change

– Coping with potential defects
• Customers, developers, environment, software

Programming is hard

• It is surprisingly difficult to specify, design,
implement, test, debug, and maintain even a
simple program

• CSE 331 will challenge you

• If you are having trouble, think before you act
– Then, look for help

• We strive to create assignments that are
reasonable if you apply the techniques taught in
lecture
– … but hard to do in a brute-force manner

Prerequisites

• Knowing Java is a prerequisite
– We assume you have mastered 142 and 143

Examples:
• Sharing:
– Distinction between == and equals()
– Aliasing (multiple references to the same object)

• Subtyping
– Varieties: classes, interfaces
– Inheritance and overriding

• Object-oriented dispatch:
– Expressions have a compile-time type
– Objects/values have a run-time type

Logistics

• Website: http://www.cs.washington.edu/cse331
– See the website for all administrative details

– Read (all) the handouts!

– There are required texts

• Run student-setup by 8pm tonight
– Problem Set 0 is due on Wednesday morning

• Collaboration policy:
– Discussion is permitted

– Carrying materials from discussion is not permitted

– Everything you turn in must be your own work

– You may not view others’ work

– If you have a question, ask

