
CSE 331 Cheat Sheet
April 14, 2011

Javadoc, Mutability, Class Design, Enums, Exceptions

Javadoc
- Whenever you write a class to be used by clients, you should write full Javadoc comments for all of

its public behavior.
- Don't repeat yourself or write vacuous comments.
- Each class constant or enumeration value can be commented
- precondition: Something assumed to be true at the start of a call.
- postcondition: Something your method promises will be true at the end of its execution, if all

preconditions were true at the start.
- Assertions: used to check preconditions

On a method or constructor:

On a class header

Mutability
A modification to the state of an object.
- Horstmann Tip 3.4.3: Whenever possible, keep accessors and mutators separate. Ideally, mutators return
void.
- Effective Java Tip #15: Minimize mutability.

Making a class immutable
• 1. Don't provide any methods that modify the object's state.
• 2. Ensure that the class cannot be extended.
• 3. Make all fields final.
• 4. Make all fields private. (ensure encapsulation)
• 5. Ensure exclusive access to any mutable object fields. Don't let a client get a reference to a field that is a
mutable object.

final: Unchangeable; unable to be redefined or overridden.

Law of Demeter: An object should know as little as possible about the internal structure of other objects with
which it interacts.

Good things that you should strive for when designing classes:
• 1) cohesion: Every class should represent a single abstraction.
• 2) completeness: Every class should present a complete interface.
• 3) clarity: Interface should make sense without confusion.
• 4) convenience: Provide simple ways for clients to do common tasks.
• 5) consistency: In names, param/returns, ordering, and behavior.

A bad thing that you should try to minimize:
• 6) coupling: Amount and level of interaction between classes.

Enums
Effective Java Tip #30: Use enums instead of int constants.

public enum Name {
VALUE, VALUE, ..., VALUE

}

Can add fields (using a private constructor) and/or additional methods:

public enum Coin {
PENNY(1), NICKEL(5), DIME(10), QUARTER(25);

private int cents;

private Coin(int cents) {
this.cents = cents;

}

public int getCents() {...}
}

How to use enums:
• Compare them with == or compareTo() (ordering is based on the order they were declared in)
• Use them in a switch statement
• Use EnumSet to maintain and manipulate a set of enum values
• Use EnumMap instead of indexing by ordinal number

Enum methods:
method description

int compareTo(E) all enum types are Comparable by order of
declaration

boolean equals(o) works, but not needed: can just use ==

String name() equivalent to toString()
int ordinal() returns an enum’s 0-based number by order of

declaration (first is 0, then 1, then 2, ...)

method description
static E valueOf(s) converts a String into an enum value
static E[] values() an array of all values of your enumeration

Exceptions
Catch exceptions by surrounding dangerous code in try/catch blocks:

try {
...
mightThrowException(s);
...

} catch (ExceptionType1 e1) {
// react to, or do something with, e1...

} catch (ExceptionType2 e2) {
// do something with e2...

} finally {
// This code will run regardless of whether there was an exception

}

Possible ways to handle an exception:
• retry the operation that failed
• re-prompt the user for new input
• print a nice error message
• quit the program

Effective Java Tip #65: Don't ignore exceptions.

Exceptions are objects, too! Use inheritance relationships to make your exception-catching code handle
multiple types of exception objects. Create your own exception class by extending RuntimeException.

Exception methods:
method description

String getMessage() text describing the error
String toString() exception’s type and description
void printStackTrace() prints a stack trace to System.err

And many more!

