
1

CSE 331

Reflection

slides created by Marty Stepp

based on materials by M. Ernst, S. Reges, D. Notkin, R. Mercer, Wikipedia

http://www.cs.washington.edu/331/

2

Reflection

• reflection: A process by which a program can examine its own types

and structure at runtime.

� sometimes called run-time type inference (RTTI)

� import java.lang.reflect.*;

• Using reflection, you can:

� Convert strings and others into classes and objects at runtime.

� Ask detailed questions in code about the abilities of a type.

� Dynamically compile, load, and add classes to a running program.

� Pass function pointers (via Method objects)

• Reflection is used internally by many Java technologies including

IDEs/compilers, debuggers, serialization, Java Beans, RMI, ...

3

The Class class

• An object of type Class represents information about a Java class.

� Its fields, methods, constructors, superclass, interfaces, etc.

� A gateway to the rest of Java's reflection system.

Class

Field

Method

Constructor

Object

compiled

class

file

Member

get/set

invoke

4

Accessing a Class object

• Ways to get a Class object:

� If you have an object: Every object has a getClass method to return

the Class object that corresponds to that object's type.

•Class<Point> pointClass = p.getClass();

� If you don't have an object, but know the class's name at compile time:

Every class has a static field named class storing its Class object.

•Class<Point> pointClass = Point.class;

� If you don't know the type until given its name as a string at runtime:

The static method Class.forName(String) will return the

Class object for a given type; pass it a full class name.

•Class<?> clazz = Class.forName("java.awt.Point");

5

Class class methods

string matching the class's headertoString()

constructs a new object of this type
(if the type has a parameterless constructor)

newInstance()

object representing this class's packagegetPackage()

full name of this class, as a stringgetName()

whether the class is public, static, etc.getModifiers()

objects representing this class's methodsgetMethod(name, params)
getMethods()

interfaces implemented by this classgetInterfaces()

objects representing this class's fieldsgetField(name)
getFields()

objects representing this class's constructorsgetConstructor(params)
getConstructors()

descriptionmethod

6

Class class methods 2

information about annotations on the
class

getAnnotation(class)
getAnnotations()

whether this class is the same as or a
supertype of the given class parameter

isAssignableFrom(class)

resource-loading featuresgetResource(name)

getResourceAsStream(name)

a Class object for this type's superclassgetSuperclass()

fields/methods/etc. declared in this filegetDeclaredFields(), ...

testing whether the class fits into one of
the given categories of types

isAnonymousClass()

isArray(), isEnum()
isInterface(),isPrimitive()

information about annotation typesisAnnotation()

isAnnotationPresent(type)

all generic type params in this classgetTypeParameters()

class name without package namegetSimpleName()

descriptionmethod

7

Reflection example

• Print all the methods and fields in the Point class:

for (Method method : Point.class.getMethods()) {

System.out.println("a method: " + method);

}

for (Field field : Point.class.getFields()) {

System.out.println("a field: " + field);

}

8

Primitives and arrays

• Primitive types and void are represented by Class constants:

� Not to be confused with Integer.class, Double.class, etc.,

which represent the wrapper classes Integer, Double, etc.

• Array classes are manipulated in reflection by static methods in the

Array class (not to be confused with java.util.Arrays).

booleanboolean.classBoolean.TYPE

...

void.class

char.class

double.class

int.class

alternate form

......

voidVoid.TYPE

charCharacter.TYPE

doubleDouble.TYPE

intInteger.TYPE

primitiveconstant

9

Generic Class class

• As of Java 1.5, the Class class is generic: Class<T>

� This is so that known types can be instantiated without casting.

Class<Point> clazz = java.awt.Point.class;

Point p = clazz.newInstance(); // no cast

• For unknown types or Class.forName calls, you get a

Class<?> and must still cast when creating instances.

Class<?> clazz = Class.forName("java.awt.Point");

Point p = (Point) clazz.newInstance(); // must cast

10

Method class methods

string matching the method's headertoString()

calls this method on given object (null if

static), passing given parameter values
invoke(obj, params)

info about the method's return typegetReturnType()

info about the method's parametersgetParameterTypes()

method's name as a stringgetName()

whether the method is public, static, etc.getModifiers()

any exceptions the method may throwgetExceptionTypes()

the class that declares this methodgetDeclaringClass()

descriptionmethod

11

Reflection example 1

• Calling various String methods in an Interactions pane:

// "abcdefg".length() => 7

> Method lengthMethod = String.class.getMethod("length");

> lengthMethod.invoke("abcdefg")

7

// "abcdefg".substring(2, 5) => "cde"

> Method substr = String.class.getMethod("substring",

Integer.TYPE, Integer.TYPE);

> substr.invoke("abcdefg", 2, 5)

"cde"

12

Reflection example 2

• Calling translate on a Point object:

// get the Point class object; create two new Point()s

Class<Point> clazz = Point.class;

Point p = clazz.newInstance();

Point p2 = clazz.newInstance();

// get the method Point.translate(int, int)

Method trans = clazz.getMethod("translate",

Integer.TYPE, Integer.TYPE);

// call p.translate(4, -7);

trans.invoke(p, 4, -7);

// call p.getX()

Method getX = clazz.getMethod("getX");

double x = (Double) getX.invoke(p); // 4.0

13

Modifier static methods
if (Modifier.isPublic(clazz.getModifiers()) { ...

string representation of the modifiers such
as "public static transient"

toString(mod)

is the field volatile?isVolatile(mod)

is the field transient?isTransient(mod)

does it use the synchronized keyword?isSynchronized(mod)

is it static?isStatic(mod)

is it public?isPublic(mod)

is it protected?isProtected(mod)

is it private?isPrivate(mod)

is this type an interface?isInterface(mod)

is it declared final?isFinal(mod)

is it declared abstract?isAbstract(mod)

descriptionstatic method

14

Field class methods

versions of set that use more specific
types of data

setBoolean(obj, value),

setByte(obj, value), ...

a Class representing this field's typegetType()

whether the field is private, static, etc.getModifiers()

string matching the field's declarationtoString()

sets the given object's value for this fieldset(obj, value)

field's name as a stringgetName()

the class that declares this fieldgetDeclaringClass()

versions of get that return more specific
types of data

getBoolean(obj),getByte(obj)

getChar(obj),getDouble(obj)

getFloat(obj),getInt(obj)

getLong(obj),getShort(obj)

value of this field within the given objectget(obj)

descriptionmethod

15

Constructor methods

string matching the constructor's headertoString()

calls this constructor, passing the given
parameter values; returns object created

newInstance(params)

info about the method's return typegetReturnType()

info about the constructor's parametersgetParameterTypes()

constructor's name (same as class name)getName()

whether the constructor is public, etc.getModifiers()

any exceptions the constructor may throwgetExceptionTypes()

the class that declares this constructorgetDeclaringClass()

descriptionmethod

16

Array class methods

• The Class object for array types has a useful method:

versions of set that use more specific
types of data

setBoolean(array,index,value),

setChar(array,index,value),...

construct new array with given attributesnewInstance(type, length)

sets value at given index of given arrayset(array, index, value)

length of given array objectgetLength(array)

versions of get that return more specific
types of data

getBoolean(array, index),

getChar(array, index),

getDouble(array, index),

getInt(array, index),

getLong(array, index), ...

value of element at given index of arrayget(array, index)

descriptionstatic method

a Class object for the type of elementsgetComponentType()

descriptionstatic method

17

Invocation exceptions

• If something goes wrong during reflection, you get exceptions.

� Almost all reflection calls must be wrapped in try/catch or throw.

� Example: ClassNotFoundException, NoSuchMethodError

• When you access a private field, you get an

IllegalAccessException.

� Else reflection would break encapsulation.

• When you call a method via reflection and it crashes, you will

receive an InvocationTargetException.

� Inside this is a nested exception containing the actual exception thrown

by the crashing code.

� You can examine the nested exception by calling getCause() on the

invocation target exception.

18

Misuse of reflection

• Some programmers who learn reflection become overly enamored

with it and use it in places where it wasn't intended.

� Example: Passing a Method as a way to get a "function pointer."

� Example: Checking the Class of values as a way of testing types.

� Reflection code is usually bulky, ugly, brittle, and hard to maintain.

• Reflection is for certain specific situations only.

� When you don't know what type to use until runtime.

� When you want to be able to dynamically create or load classes while a

program is running (example: CSE 14x Practice-It tool).

� When you want to check information about a particular type.

� When you want to write testing/grading libraries like JUnit.

19

Reflection examples

• The CSE 142 Critters simulator uses reflection to load all of the

student's critter animal classes into the system.

� Uses reflection to look for all classes with a superclass of Critter,

constructs new instances of them, and adds them to the simulator.

• The CSE 14x Practice-It! tool uses reflection to dynamically compile,

load, run, and test program code submitted by students.

� The student's code is injected into a randomly named new class.

� The class is written to disk, compiled, and loaded into the VM.

� By reflection, the methods/code in the class are executed and tested.

� Test results are gathered and shown to the student.

20

Reflection exercise

• Write a JUnit test to help grade the internal correctness of a

student's submitted program for a hypothetical assignment.

� Make the tests fail if the class under test has any of the following:

• more than 4 fields

• any non-private fields

• any fields of type ArrayList

• fewer than two private helper methods

• any method that has a throws clause

• any method that returns an int

• missing a zero-argument constructor

