
1

CSE 331

Hash codes; annotations

slides created by Marty Stepp

based on materials by M. Ernst, S. Reges, D. Notkin, R. Mercer, Wikipedia

http://www.cs.washington.edu/331/

2

Surprising result #1
Point p = new Point(3, 4);

Set<Point> set = new HashSet<Point>();

set.add(p);

System.out.println(set.contains(new Point(3, 4))); // true

p.translate(2, 2);

System.out.println(set.contains(new Point(5, 6))); // false

• Where did p go? What is wrong?

3

Hashing

• hash: To map a value to a specific integer index.

� hash table: An array that stores elements via hashing.

• The internal data structure used by HashSet and HashMap.

� hash function: An algorithm that maps values to indexes.

• A possible hash function for integers: HF(i) → i % length

set.add(11); // 11 % 10 == 1

set.add(49); // 49 % 10 == 9

set.add(24); // 24 % 10 == 4

set.add(7); // 7 % 10 == 7

� What is a hash function for a string? for other kinds of objects?

0

3

24

4

0

5

0

6

7

7

0

8

490110value

9210index

4

Efficiency of hashing
public static int HF(int i) { // int hash function

return Math.abs(i) % elements.length;

}

• Add: simply set elements[HF(i)] = i;

• Search: check if elements[HF(i)] == i

• Remove: set elements[HF(i)] = 0;

• Runtime of add, contains, and remove: O(1)!

• Are there any potential problems with hashing?

� collisions: Multiple element values can map to the same bucket.

5

Chaining

• chaining: Resolving collisions by storing a list at each index.

� Add/search/remove must traverse lists, but the lists are short.

� Impossible to "run out" of indexes, unlike with probing.

� Alternative to chaining: probing (choosing the next available index).

3 4 5 6 7 8

value

9210index

54

14

2411 7 49

6

The hashCode method

• From the Object class:

public int hashCode()

Returns an integer hash code for this object.

� We can call hashCode on any object to find the index where it

"prefers" to be placed in a hash table.

7

Hash function for objects
public static int HF(Object o) {

return Math.abs(o.hashCode()) % elements.length;

}

• Add: simply set elements[HF(o)] = o;

• Search: check if elements[HF(o)].equals(o)

• Remove: set elements[HF(o)] = null;

8

Surprising result #1
Point p = new Point(3, 4);

Set<Point> set = new HashSet<Point>();

set.add(p);

System.out.println(set.contains(new Point(3, 4))); // true

p.translate(2, 2);

System.out.println(set.contains(new Point(5, 6))); // false

� The code breaks because the point is put into a certain bucket when its

state is (3, 4), but it isn't in the bucket that is returned when

hashCode is called on an object with state (5, 6).

3 4 5 6 7 8

value

9210index

(3, 4)

HF(p) when p is (3, 4) == 5 HF(p) when p is (5, 6) == 8

9

Surprising result #2
// assuming that Time is a class we have written,

// and that Time does have a proper equals method

Time t1 = new Time(11, 30, true);

Time t2 = new Time(11, 30, true);

Set<Time> set = new HashSet<Time>();

set.add(t1);

System.out.println(set.contains(t1)); // true
System.out.println(set.contains(t2)); // false

• What is wrong?

10

Implementing hashCode

• hashCode's implementation depends on the object's type/state.

� A String's hashCode method adds the ASCII values of its letters.

� A Point's hashCode produces a weighted sum of its x/y coordinates.

� A Double's hashCode converts the number into bits and returns that.

� A collection's hashCode combines the hash codes of its elements.

• You can override hashCode in your classes.

� Effective Java Tip #9:

Always override hashCode when you override equals.

• The default implementation from class Object just uses the

object's memory address to produce the integer code.

� Why might this not be ideal?

11

The hashCode contract

• The general contract of hashCode is that it must be:

� Self-consistent (produces the same results on each call):

o.hashCode() == o.hashCode()

...so long as o doesn't change between the calls

� Consistent with equality:

a.equals(b) implies that

a.hashCode() == b.hashCode()

!a.equals(b) does NOT necessarily imply that

a.hashCode() != b.hashCode() (why not?)

12

Surprising result #2
// assuming that Time is a class we have written,

// and that Time does have a proper equals method

Time t1 = new Time(11, 30, "AM");

Time t2 = new Time(11, 30, "AM");

Set<Time> set = new HashSet<Time>();

set.add(t1);

System.out.println(set.contains(t1)); // true
System.out.println(set.contains(t2)); // false

� The code breaks because Time has no hashCode method, so each

object's hash code is just its memory address. This is inconsistent with

equals and so it cannot find seemingly equal objects in the set.

3 4 5 6 7 8

value

9210index

11:30 AM
HF(t1) == 2 HF(t2) == 7

13

hashCode implementation 1

• Possible implementation of hashCode for Time objects:

public int hashCode() {

return new Random().nextInt();

}

� Does this meet the general contract of hashCode?

� Is this a good hashCode function? Why or why not?

• In what cases does this hashCode produce poor results?

14

hashCode implementation 2

• Possible implementation of hashCode for Time objects:

public int hashCode() {

return 42;

}

� Does this meet the general contract of hashCode?

� Is this a good hashCode function? Why or why not?

• In what cases does this hashCode produce poor results?

15

hashCode implementation 3

• Possible implementation of hashCode for Time objects:

public int hashCode() {

return hour + minute;

}

� Does this meet the general contract of hashCode?

� Is this a good hashCode function? Why or why not?

• In what cases does this hashCode produce poor results?

16

hashCode implementation 4

• Recommended implementation of hashCode for Time objects:

public int hashCode() {

return 65531 * amPm.hashCode()

+ 67 * hour + minute;

}

� All fields of the object should be incorporated into the hash code.

� The code should weight each field by multiplying them by various

prime numbers to reduce collisions between unequal objects.

• e.g. Don't want 11:05 AM to collide with 5:11 PM if possible.

• We prefer to multiply by primes because they wrap more unevenly when

they exceed the array's size.

17

hashCode tricks

• If one of your object's fields is an object, call its hashCode:

public int hashCode() { // TimeSpan

return 65531 * amPm.hashCode() + ...;

}

• To incorporate an array, use Arrays.hashCode.

private String[] addresses;

public int hashCode() {

return 3137 * Arrays.hashCode(addresses) + ...

} // also Arrays.deepHashCode for multi-dim arrays

18

hashCode tricks 2

• To incorporate a double or boolean, use the hashCode

method from the Double or Boolean wrapper classes:

public int hashCode() { // BankAccount

return 37 * new Double(balance).hashCode() +

new Boolean(isCheckingAccount).hashCode() + ...;

}

• If your hash code is expensive to compute, consider caching it.

private int myHashCode = ...; // pre-compute once

public int hashCode() {

return myHashCode;

}

19

String's hashCode

• The hashCode function for String objects looks like this:

public int hashCode() {

int hash = 0;

for (int i = 0; i < this.length(); i++) {

hash = 31 * hash + this.charAt(i);

}

return hash;

}

� Early versions of the Java examined only the first 16 characters.

For some common data this led to poor hash table performance.

� As with any general hashing function, collisions are possible.

• Example: "Ea" and "FB" have the same hash value.

20

Annotations

21

Annotations

• annotation: Markup that provides information to the compiler.

� Can also be used for deployment-time or run-time processing.

• Common uses for annotations:

� To detect problems or errors in code

� To suppress compiler warnings

� For unit tests, e.g. JUnit

22

Annotation usage

@AnnotationName

@AnnotationName(param=value, ..., param=value)

• Examples:

@SuppressWarnings

@Test(timeout=2000)

• An annotation can be placed on:

� a class

� a method

� a field

� a local variable, ...

23

Common annotations

• The following annotation types come with the JDK:

code that is discouraged from use@Deprecated

sets an annotation to appear in Javadoc@Documented

descriptionname

a superclass's method that is being overridden@Override

turn off compiler warnings@SuppressWarnings

@Retention makes annotation data available at runtime

24

Using @Override

• Whenever you override a superclass's method, such as equals or

hashCode, you should annotate it with @Override.

� If you do, the compiler will produce an error if you don't override it

properly (misspell the name, wrong parameter/return types, etc.)

@Override
public boolean equal(Object other) { ...

// error; should be 'equals'

� This also applies to methods you implement from an interface.

@Override

public int compareTo(Time other) { ...

25

Creating an annotation type
public @interface Name {}

Example:

public @interface GradingScript {}

...

@GradingScript

public class TestElection {...}

• Most programmers don't commonly need to create annotations.

26

An annotation with params
public @interface Name {

type name(); // parameters

type name() default value; // optional

}

Example:

public @interface ClassPreamble {

String author();

String date();

int currentRevision() default 1;

String lastModified() default "N/A";

String[] reviewers();

}

27

Using custom annotation
@ClassPreamble(

author = "John Doe",

date = "3/17/2002",

currentRevision = 6,

lastModified = "4/12/2004",

reviewers = {"Alice", "Bob", "Cindy"}

)

public class FamilyTree {

...

}

28

Prof. Ernst's annotations

• UW's own Prof. Michael Ernst and his research team have

contributed a set of custom annotations that can be used to provide

sophisticated type checking and nullness checking for Java:

for flyweighted objects@Interned

for tagging regular expressions@Regex

for internationalization@Localized

a value for which null can/cannot be passed@Nullable,

@NonNull

for security and encryption@Encrypted,

@Untainted

descriptionname

a temporarily unmodifiable value@Readonly

a class of objects that cannot mutate@Immutable

@GuardedBy for concurrency

