
1

CSE 331

Timers, Threads, and Concurrency

slides created by Marty Stepp

based on materials by M. Ernst, S. Reges, D. Notkin, R. Mercer, Wikipedia

http://www.cs.washington.edu/331/

2

Timers

• timer: An object that executes an action

repeatedly at given intervals.

• Used to:

� create animations in GUI programs.

� add delays and pauses when required / desired.

� update the appearance of a UI periodically.

• A Timer is an example of a "callback." Your code starts the timer,

then later at a specified time, the timer activates, causing an event

in your system.

3

The Timer class

import javax.swing.Timer;

� public Timer(int msDelay, ActionListener listener)

Constructs a timer to fire an action event every msDelay ms.

set to false to cause a one-time eventsetRepeats(boolean)

sets initial delay before first event, which can

be different from delay between events

setInitialDelay(ms)

returns true if the timer has been startedisRunning()

attaches an additional listener to the timeraddActionListener(AL)

resumes a stopped timer, waiting its initial

delay and then firing events at the usual rate

restart()

stops timer so that no more events will occurstop()

starts timer to generate eventsstart()

descriptionmethod

4

// This code might move a shape across the screen.

private int DELAY = 100;

...

public class Painter implements ActionListener {

public void actionPerformed(ActionEvent event) {

x += 5;

myPanel.repaint();

}

}

...

Timer tim = new Timer(DELAY, new Painter());

tim.start();

Timer example

5

Processes and threads

• process: A program running on the computer.

� Processes have memory isolation (don't share data with each other).

• thread: A "lightweight process"; a single sequential flow of

execution or isolated sub-task within one program.

� A means to implement programs that seem to perform multiple tasks

simultaneously (a.k.a. concurrency).

� Threads within the same process do share data with each other.

• i.e., Variables created in one thread can be seen by others.

• "shared-memory concurrency"

� sometimes called a lightweight process

6

Places threads are used

• I/O

� loading a file in the background

• Networking

� example: thread that waits for another machine to connect

• Graphics and animation

� Timer class is sometimes preferred for this (seen later)

• event-handling loops

� largely handled for us by Java

• parallelized algorithms

� example: multithreaded merge sort

7

A multithreaded program
• 1 thread:

� program executes sequentially

� every program has a "main

thread" for its main method

• pre-emptive scheduling: OS lets

each thread/process run for a short

time slice then switches to another.

� High priority threads run first.

• 2 or more threads:

� runs each thread sequentially,

but interleaves them

� overall program is concurrent

8

AWT/Swing event thread

• The first time your program creates an AWT or Swing component, it

causes an event dispatcher thread to be started.

� The event thread is the thread in which all event listeners

(ActionListener, MouseListener, etc.) execute when events occur.

� Listeners should be short so they don't block each other or the GUI.

• daemon thread: One that runs

solely to aid other threads.

9

Thread states

• new: Just constructed; hasn't started to run yet.

• runnable: Running, or enqueued to be run.

• blocked or waiting: Asleep, not running; waiting for some signal

from elsewhere in the program to resume.

• timed waiting: Waiting a given exact amount of time to resume.

• terminated: Done running.

� see Thread's getState()

10

Thread state diagram

(Core Java Figure 14-3)

11

Thread object methods

waits indefinitely, or for a given number of milliseconds, for the

thread to finish running

join()

join(ms)

puts a thread into runnable statestart()

instructs a thread to stop immediately (deprecated)stop()

gets/sets this thread's running priority. Possible values:

Thread.MIN_PRIORITY, NORM_PRIORITY, MAX_PRIORITY

getPriority()

setPriority(int)

gets/sets the name of this thread as a stringgetName()

setName(name)

thread's state. One of Thread.State.NEW, RUNNABLE,

BLOCKED, WAITING, TIMED_WAITING, or TERMINATED

getState()

stops the thread's current time sliceinterrupt()

returns true if the thread is in runnable stateisAlive()

DescriptionMethod name

12

Thread static methods

causes the current thread to wait for at least the given

number of ms before continuing

sleep(ms)

returns the current code's active threadgetCurrentThread()

temporarily pauses the current thread to let others runyield()

redefines what to do if an exception is not caught and

reaches all the way up the stack to the top level

setDefaultUncaughtExc

eptionHandler(handler)

returns true if current thread is in interrupted stateinterrupted()

returns true if current thread has locked the given

object

holdsLock(obj)

returns stack trace data for all currently running threadsgetAllStackTraces()

causes current thread to print a stack tracedumpStack()

number of currently runnable/active threadsactiveCount()

DescriptionStatic method name

13

The Runnable class

• To cause your own code to run in its own thread, write a class that

implements the Runnable interface.

� Then construct a new Thread, passing your runnable object,

and start the thread.

� public Thread(Runnable runnable)

� public interface Runnable {

public void run();

}

14

Runnable example
public class MyRunnable implements Runnable {

public void run() {

// perform a task...

}

}

...

Thread t = new Thread(new MyRunnable());

t.start();

• Sometimes done with an anonymous inner class:

new Thread(new Runnable() {

public void run() {

// perform a task...

}

}).start();

15

Problem: Infinite loops

• Suppose we want to write a testing system that runs methods

written by students and verifies their behavior.

� But some students write poor code that goes into an infinite loop:

// run code that might have an infinite loop

// (student might have a bug in his code)

StudentCode student = new StudentCode();

student.doStuff(); // might hang

// if doStuff hangs, this will never be reached

System.out.println("Completed.");

� The student's bug will hang our entire testing system! What to do?

16

Waiting for a thread
// run code that might have an infinite loop

StudentCode student = new StudentCode();

...

Thread t = new Thread(new Runnable() {

public void run() {

student.doStuff(); // might hang

}

});

// run code in thread and give up after 10 sec

t.start();

try {

t.join(10000);

} catch (InterruptedException ie) {}

if (t.isAlive()) {

System.out.println("Timed out!");

} else {

System.out.println("Completed.");

}

17

Sleeping a thread
try {

Thread.sleep(ms);

} catch (InterruptedException ie) {}

� Causes current thread to wait for the given number of milliseconds.

� If the program has other threads, they will be given a chance to run.

� Useful for writing code that checks for an update periodically.

// check for new network messages every 2 sec

while (!done) {

try {

Thread.sleep(2000);

} catch (InterruptedException ie) {}

myMessageQueue.read();

...

}

18

Thread safety

• thread safe: Can be used in a multithreaded environment.

� Many of the Java library classes are not thread safe!

� In other words, if two threads access the same object, things break.

• Examples:

� AWT and Swing are not thread safe; if two threads are modifying a GUI

simultaneously, they may put the GUI into an invalid state.

� ArrayList and other collections from java.util are not thread

safe; two threads changing the same list at once may break it.

� StringBuilder is not thread safe.

• Counterexamples:

� The Random class chooses numbers in a thread-safe way.

19

Unsafe code
• How can the following class be

broken by multiple threads?

1 public class Counter {

2 private int c = 0;

3 public void increment() {

4 int old = c;

5 c = old + 1; // c++;

6 }

7 public void decrement() {

8 int old = c;

9 c = old - 1; // c--;

10 }

11 public int value() {

12 return c;

13 }

14 }

Scenario that breaks it:

• Threads A and B start.

• A calls increment and runs to the

end of line 4. It retrieves the old

value of 0.

• B calls decrement and runs to the

end of line 8. It retrieves the old

value of 0.

• A sets c to its old (0) + 1.

• B sets c to its old (0) - 1.

• The final value() is -1, though

after one increment and one

decrement, it should be 0!

20

Object locks

• Every Java object has a built-in internal "lock".

� A thread can "wait" on an object's lock, causing it to pause.

� Another thread can "notify" on an object's lock, unpausing any other

thread(s) that are currently waiting on that lock.

� An implementation of monitors, a classic concurrency construct.

� These methods are not often used directly; but they are used

internally by other concurrency constructs (see next slide).

causes the current thread to wait (block) on this object's

lock, indefinitely or for a given # of ms

wait()

wait(ms)

unblocks all threads waiting on this object's locknotifyAll()

unblocks one random thread waiting on this object's locknotify()

descriptionmethod

21

The synchronized keyword
// synchronized method: uses "this" object's lock

public synchronized type name(parameters) {
statement(s);

}

// synchronized static method: uses the given class's lock

public static synchronized type name(parameters) {
statement(s);

}

// synchronized block: uses the given object's lock

synchronized (object) {
statement(s);

}

• The keyword synchronized causes a given method or block of

code to acquire an object's lock before running.

� Ensures that only one thread can be in the given block at a time.

22

The volatile keyword

private volatile type name;

• volatile field: An indication to the VM that multiple threads may try

to access/update the field's value at the same time.

� Causes Java to immediately flush any internal caches any time the

field's value changes, so that later threads that try to read the value

will always see the new value (never the stale old value).

� Allows limited safe concurrent access to a field inside an object even if

another thread may modify the field's value.

� Does not solve all concurrency issues; should be replaced by

synchronized blocks if more complex access is needed.

23

Synchronized counter
public class Counter {

private volatile int c = 0;

public synchronized void increment() {

int old = c;

c = old + 1; // c++;

}

public synchronized void decrement() {

int old = c;

c = old - 1; // c--;

}

public int value() {

return c;

}

}

� Should the value method be synchronized? Why/why not?

24

Deadlock

• liveness: Ability for a multithreaded program to run promptly.

• deadlock: Situation where two or more threads are blocked forever,

waiting for each other.

� Example: Each is waiting for the other's locked resource.

� Example: Each has too large of a synchronized block.

• livelock: Situation where two or more threads are caught in an

infinite cycle of responding to each other.

• starvation: Situation where one or more threads are unable to make

progress because of another "greedy" thread.

� Example: thread with a long-running synchronized method

25

Concurrency and collections

• Collections from java.util are not thread safe!

� When two or more threads try to modify the same collection through

an iterator, you get a ConcurrentModificationException.

� When ≥ 2 threads modify a collection otherwise, bad state can result.

• But Java provides thread-safe collection wrapper objects via static

methods in the Collections class:

synchronizedList(list)

synchronizedMap(map)

synchronizedSet(set)

synchronizedCollection(coll)

Method

26

When to make it safe?

• When creating classes for a library, you may not know exactly how

the classes will be used.

� Synchronizing everything makes your class slower.

� Give clients a choice by supplying a thread-safe wrapper object.

• Or use an immutable object, especially if the object is small or

represents a fundamental data type.

� Immutable objects are inherently thread safe.

• When making an object thread-safe, synchronize only the critical

sections of the class.

27

New classes for locking
import java.util.concurrent.*;

import java.util.concurrent.locks.*;

• These classes offer higher granularity and control than the

synchronized keyword can provide.

� Not needed by most programs.

� java.util.concurrent also contains blocking data structures.

like Lock but separates read operations from writesReadWriteLock

a class that implements LockReentrantLock

a particular shared resource that can be waited upon;

conditions are acquired by asking for one from a Lock

Condition

an interface for controlling access to a shared resourceLock

descriptionClass/interface

