
1

CSE 331

Memento Pattern and Serialization

slides created by Marty Stepp

based on materials by M. Ernst, S. Reges, D. Notkin, R. Mercer, Wikipedia

http://www.cs.washington.edu/331/



2

Pattern: Memento
a memory snapshot
of an object's state



3

• Problem: Sometimes we want to remember a version of an 

important object's state at a particular moment.

� example: Writing an Undo / Redo operation.

� example: Ensuring consistent state in a network.

� example: persistency; save / load state between runs of a program.

• Poor solutions to this problem:

� Writing out the object's state as a formatted text file,

reading it back in and parsing it again later.

� Making many deep copies of the object.

The problem situation



4

• memento: A saved "snapshot" of the state of an object or objects 

for possible later use.

� Often involves a mechanism for transporting an object from one 

location to another and back again.

• We'll examine Memento in the context of saving an object to disk

using input/output streams.

� Also very useful for implementing Undo/Redo functionality.

Memento pattern



5

I/O streams, briefly

• stream: An abstraction of a source or target of data.

� 8-bit bytes flow to (output) and from (input) streams.

• Can represent many data sources:

� files on hard disk

� another computer on network 

� web page

� input device (keyboard, mouse, etc.)

• Represented by java.io classes:

� InputStream

� OutputStream



6

Streams and inheritance

• all input streams extend common superclass InputStream;

all output streams extend common superclass OutputStream

� Guarantees that all sources of data have the same methods.

� Provides minimal ability to read/write one byte at a time.



7

Serialization

• serialization: Reading / writing objects and their exact state into a 

linear format using I/O streams.

� Entire objects can be written to files, a network, a database, etc.

� Lets you save your objects to disk and restore later.

� Avoids converting object's state into an arbitrary text format.



8

Classes for serialization
•ObjectOutputStream : A connection to write (save) objects.

� public class ObjectOutputStream

• public ObjectOutputStream(OutputStream out)

• public void writeObject(Object o)

throws IOException

•ObjectInputStream : A connection to read (load) objects.

� public class ObjectInputStream

• public ObjectInputStream(InputStream in)

• public Object readObject() throws Exception

• Common read/write target: A file.

� A FileInputStream or FileOutputStream can be constructed 
by passing a file name string.



9

Serialization example
// write the given object to the given file

try {

OutputStream os = new FileOutputStream("filename");

ObjectOutputStream oos = new ObjectOutputStream(os);

oos.writeObject(object);

oos.close();

} catch (IOException e) { ... }

// load the object named someObject from file "file.dat"

try {

InputStream is = new FileInputStream("filename");

ObjectInputStream ois = new ObjectInputStream(is);

Type name = (Type) ois.readObject();

ois.close();

} catch (Exception e) { ... }



10

• You must implement the (methodless) java.io.Serializable

interface for your class to be compatible with streams.

public class BankAccount implements Serializable {

...

� (Recall: Methodless "tagging" interfaces (Serializable, Cloneable) pre-

date better techniques such as annotations.)

Making a class serializable



11

serialVersionUID
• There is a versioning issue with serializing / deserializing objects.

� You might save a BankAccount object, then edit and recompile the 

class, and later try to load the (now obsolete) object.

� Serializable objects should have a field inside named 

serialVersionUID that marks the "version" of the code.

• (If your class doesn't change, you can set it to 1 and never change it.)

public class BankAccount implements Serializable {

private static final long serialVersionUID = 1;

...



12

Serializable fields

• When you make a class serializable, all of its fields must be 

serializable as well.

� All primitive types are serializable.

� Many built-in objects are serializable:

• String, URL, Date, Point, Random

• all collections from java.util (ArrayList, HashMap, TreeSet, etc.)

� But your own custom types might not be serializable!

• If you try to save an object that is not serializable or has non-

serializable fields, you will get a NotSerializableException.



13

Transient fields

• transient: Will not be saved during serialization.

private transient type name;

Example:

private transient PrintStream out;

• Ensure that all instance variables inside your class are either 

serializable or declared transient.

� A transient field won't be saved when object is serialized.

� When deserialized, the field's value will revert back to null .



14

Custom serialization

• The object in/out streams have a default notion of how objects 

should be serialized and saved.

� If this is unsatisfactory for your object for some reason, you can 

override it by writing these methods in your class:

private void writeObject(ObjectOutputStream out)

throws IOException

private void readObject(java.io.ObjectInputStream in)

throws IOException, ClassNotFoundException

private void readObjectNoData() 

throws ObjectStreamException

� (You don't usually need to write these methods.)



15

Serialization exercise

• Let's make our Rock-Paper-Scissors game serializable.

� Save the state of past rock-paper-scissors games played and games 

won by the first player.

� When the game loads again, restore that state.

• If you have time, implement an Undo feature.

� This feature will go back to the previous game.


