
1

CSE 331

Java Packages; JAR Archives

slides created by Marty Stepp

based on materials by M. Ernst, S. Reges, D. Notkin, R. Mercer, Wikipedia

http://www.cs.washington.edu/331/

2

Java packages

• package: A collection of related classes.

� Can also "contain" sub-packages.

� Sub-packages can have similar names,

but are not actually contained inside.

•java.awt does not contain java.awt.event

• Uses of Java packages:

� group related classes together

� as a namespace to avoid name collisions

� provide a layer of access / protection

� keep pieces of a project down to a manageable size

3

Packages and directories

• package �� directory (folder)

• class �� file

• A class named D in package a.b.c should reside in this file:

a/b/c/D.class

� (relative to the root of your project)

• The "root" directory of the package hierarchy is determined by your

class path or the directory from which java was run.

4

Classpath

• class path: The location(s) in which Java looks for class files.

• Can include:

� the current "working directory" from which you ran javac / java

� other folders

� JAR archives

� URLs

� ...

• Can set class path manually when running java at command line:

� java -cp /home/stepp/libs:/foo/bar/jbl MyClass

5

A package declaration
package name;

public class name { ...

Example:

package pacman.model;

public class Ghost extends Sprite {

...

}

• File Sprite.java should go in folder pacman/model .

6

Importing a package
import packageName.*; // all classes

Example:

package pacman.gui;

import pacman.model.*;

public class PacManGui {

...

Ghost blinky = new Ghost();

}

•PacManGui must import the model package in order to use it.

7

Importing a class
import packageName.className; // one class

Example:

package pacman.gui;

import pacman.model.Sprite;

public class PacManGui {

Ghost blinky = new Ghost();

}

• Importing single classes has high precedence:

� if you import .*, a same-named class in the current dir will override

� if you import .className, it will not

8

Static import
import static packageName.className.*;

Example:

import static java.lang.Math.*;

...

double angle = sin(PI / 2) + ln(E * E);

• Static import allows you to refer to the members of another class

without writing that class's name.

• Should be used rarely and only with classes whose contents are

entirely static "utility" code.

9

Referring to packages

packageName.className

Example:

java.util.Scanner console =

new java.util.Scanner(java.lang.System.in);

• You can use a type from any package without importing it if you

write its full name.

• Sometimes this is useful to disambiguate similar names.

� Example: java.awt.List and java.util.List

� Or, explicitly import one of the classes.

10

The default package

• Compilation units (files) that do not declare a package are put into a

default, unnamed, package.

• Classes in the default package:

� Cannot be imported

� Cannot be used by classes in other packages

• Many editors discourage the use of the default package.

• Package java.lang is implicitly imported in all programs by default.

� import java.lang.*;

11

Package access

• Java provides the following access modifiers:

� public : Visible to all other classes.

� private : Visible only to the current class (and any nested types).

� protected : Visible to the current class, any of its subclasses, and

any other types within the same package.

� default (package): Visible to the current class and any other types

within the same package.

• To give a member default scope, do not write a modifier:

package pacman.model;

public class Sprite {

int points; // visible to pacman.model.*

String name; // visible to pacman.model.*

12

Package exercise

• Add packages to the Rock-Paper-Scissors game.

� Create a package for core "model" data.

� Create a package for graphical "view" classes.

� Any general utility code can go into a default package or into another

named utility (util) package.

� Add appropriate package and import statements so that the types can

use each other properly.

13

• JAR: Java ARchive. A group of Java classes and supporting files

combined into a single file compressed with ZIP format, and given

.JAR extension.

• Advantages of JAR files:

� compressed; quicker download

� just one file; less mess

� can be executable

• The closest you can get to having a .exe

file for your Java application.

JAR Files (yousa likey!)

14

Creating a JAR archive

• from the command line:

jar -cvf filename.jar files

� Example:

jar -cvf MyProgram.jar *.class *.gif *.jpg

• some IDEs (e.g. Eclipse) can create JARs automatically

� File → Export... → JAR file

15

Running a JAR

• Running a JAR from the command line:

� java -jar filename.jar

• Most OSes can run JARs directly by double-clicking them:

16

Making a runnable JAR

• manifest file: Used to create a JAR runnable as a program.

jar -cvmf manifestFile MyAppletJar.jar

mypackage/*.class *.gif

Contents of MANIFEST file:

Main-Class: MainClassName

� Eclipse will automatically generate and insert a proper manifest

file into your JAR if you specify the main-class to use.

17

Resources inside a JAR

• You can embed external resources inside your JAR:

� images (GIF, JPG, PNG, etc.)

� audio files (WAV, MP3)

� input data files (TXT, DAT, etc.)

� ...

• But code for opening files will look outside your JAR, not inside it.
� Scanner in = new Scanner(new File("data.txt")); // fail

� ImageIcon icon = new ImageIcon("pony.png"); // fail

� Toolkit.getDefaultToolkit().getImage("cat.jpg"); // fail

18

Accessing JAR resources

• Every class has an associated .class object with these methods:

� public URL getResource(String filename)

� public InputStream getResourceAsStream(String name)

• If a class named Example wants to load resources from within a

JAR, its code to do so should be the following:
� Scanner in = new Scanner(

Example.class.getResourceAsStream("/data.txt"));

� ImageIcon icon = new ImageIcon(

Example.class.getResource("/pony.png"));

� Toolkit.getDefaultToolkit().getImage(

Example.class.getResource("/images/cat.jpg"));

� (Some classes like Scanner read from streams; some like Toolkit read from URLs.)

� NOTE the very important leading / character; without it, you will get a null result

19

JAR to EXE (JSmooth)

• JSmooth is a free program that

converts JARs into Windows EXE files.

� http://jsmooth.sourceforge.net/

� If the machine does not have Java

installed, your EXE will help the user

to download and install Java.

� A bit of a hack; not generally needed.

• Using JSmooth:

� choose Skeleton → Windowed Wrapper

� name your .exe under Executable → Executable Binary

� browse to your .jar under Application → Embedded JAR

� select the main class under Application → Main class

