
1

CSE 331

The Strategy and State Patterns

slides created by Marty Stepp

based on materials by M. Ernst, S. Reges, D. Notkin, R. Mercer, Wikipedia

http://www.cs.washington.edu/331/

2

Gang of Four (GoF) patterns

• Creational Patterns (abstracting the object-instantiation process)

� Factory Method Abstract Factory Singleton

� Builder Prototype

• Structural Patterns (how objects/classes can be combined)

� Adapter Bridge Composite

� Decorator Facade Flyweight

� Proxy

• Behavioral Patterns (communication between objects)

� Command Interpreter Iterator

� Mediator Observer State

� Strategy Chain of Responsibility Visitor

� Template Method

3

Pattern: Strategy
objects that hold different algorithms to solve a problem

4

The problem situation

• Problem: We want to generalize behavior of one part of our app.

� Example: Layout of components within containers.

� Example: Ways of sorting to arrange data.

� Example: Computer game player AI algorithms.

• Poor solutions to the problem:

� Boolean flags or many set methods to enable various algorithms.

• myContainer.useFlow(); game.playerDifficulty(3);

� Lots of if statements in our app to choose between algorithms.

• if (abc) { mergeSort(data); } else if (xyz) { bubbleSort(data); }

� Rewriting entire model classes just to change the algorithm.

• FlowContainer, BorderContainer, ..., EasyPlayer, HardPlayer

5

• strategy: An algorithm separated from the object that uses it, and

encapsulated as its own object.

� A behavioral pattern.

� Each strategy implements one specific behavior;

one implementation of how to solve the same problem.

� Separates algorithm for behavior from object that wants to act.

� Allows changing an object's behavior dynamically without extending or

changing the object itself.

• examples:

� file saving; file compression; sorting; Comparators

� layout managers on GUI containers

� AI algorithms for computer game players

Strategy pattern

6

Implementing strategies

• Write an interface representing the general behavior / algorithm.

public interface CardStrategy {...}

• Provide a way to supply an object that meets this interface into the

larger overall model (sometimes called dependency injection).

public class CardGame {

public void setStrategy(CardStrategy strat) {...}

}

• Write classes that implement the interface w/ specific algorithms.
public class TimidStrategy implements CardStrategy {...}

public class RandomStrategy implements CardStrategy {...}

public class CleverStrategy implements CardStrategy {...}

7

LayoutManager strategies

• Layout managers in Java implement the Strategy pattern.

� Each LayoutManager object has an algorithm to position components.

public interface LayoutManager {

void addLayoutComponent(String name, Component comp);

void layoutContainer(Container container);

Dimension minimumLayoutSize(Container parent);

Dimension preferredLayoutSize(Container parent);

void removeLayoutComponent(Component comp);

}

public class BorderLayout implements LayoutManager {...}

public class FlowLayout implements LayoutManager {...}

public class GridLayout implements LayoutManager {...}

8

Custom layout example
import java.awt.*;

// Lays out components at preferred sizes in a stack that

// cascades from top/left down with 20px between each.

public class CascadingLayout implements LayoutManager {

private static final int GAP = 20;

public void layoutContainer(Container container) {

int xy = 0;

for (Component comp : container.getComponents()) {

comp.setSize(comp.getPreferredSize());

comp.setLocation(xy, xy);

xy += GAP;

}

}

public Dimension minimumLayoutSize(Container c) {

return new Dimension(0, 0);

}

public Dimension preferredLayoutSize(Container c) {

return new Dimension(500, 500);

}

public void addLayoutComponent(String n, Component c) {}

public void removeLayoutComponent(Component c) {}

}

9

Strategies as observers

• Sometimes strategies must react to changes in the state of a model.

� Example: Game player strategies must play when it is their turn.

• So it can be useful to have the strategy observe the model:

� myGame.addObserver(myStrategy);

• Possible complication: Can the strategy do something malicious?

Can a rogue strategy put the game into an invalid state?

� How might we avoid or fix this problem?

10

Strategy exercise

• Modify the Rock-Paper-Scissors game to pit a human player against

a computer player.

• Give the computer player the ability to use different strategies:

� RockStrategy: Always chooses rock.

� RandomStrategy: Chooses completely at random.

� LearningStrategy: Chooses the weapon to beat the weapon that

was chosen by the human player last game.

� StatisticalStrategy: Chooses the weapon that will beat the

weapon being used by the human player the majority if the time. If

there is a tie, chooses any weapon randomly.

11

Pattern: State
representing the state of one object using another object

12

The problem situation

• Problem: We have a model with complex states.

� Example: A poker game that can be in progress, betting, drawing, ...

� Example: A network app that can wait for messages, send, ...

� Various parts of our code (in and out of the model) need to understand

and react to that state in different ways.

• Poor solutions to the problem:

� Trying to deduce the model's state based on complex analysis of

various fields within the model.

• if the winner is null and current player is p2, then ...

• if my message buffer queue is empty and 0 bytes available, then ...

13

• state: An object whose sole purpose is to represent the current

"state" or configuration of another larger object.

� A behavioral pattern.

� Often implemented with an enum type for the states.

� Each state object represents one specific state for the larger object.

� The larger object will set its state in response to various mutations.

� Allows various observers and interested parties to quickly and

accurately know what is going on with the larger object's status.

• Analogous to the notion of finite state machines.

� Set of states (nodes)

� Set of edges (mutations that cause state changes)

State pattern

14

State enum example
// Represents states for a poker game.

public enum GameState {

NOT_STARTED, IN_PROGRESS, WAITING_FOR_BETS,

DEALING, GAME_OVER;

}

// Poker game model class.

public class PokerGame {

private GameState state;

public GameState getState() { return state; }

public void ante(int amount) {

...

state = WAITING_FOR_BETS; // change state

setChanged();

notifyObservers(state);

}

}

