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Custom components

• AWT/Swing come with lots of components that you can use to 

implement a fully-featured GUI.

• But there are cases when you need a custom component.

� Usually this is when you want to paint custom 2-D graphics.

� We often call a custom painted component a canvas.

• To do so, write a class that extends JComponent .

� Override method paintComponent to tell Java how to draw it:

public void paintComponent(Graphics g)

• Some programmers extend JPanel rather than JComponent .
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• Coordinate system: (0, 0) at top-left,

x-axis increases rightward, y-axis downward.

• Component's surface is transparent unless drawn on.

• JComponent's paintComponent does important things that we 

don't want to lose.  (e.g. paints the component's background)

� So call the method super.paintComponent first thing.

public void paintComponent(Graphics g) {

super.paintComponent(g);

...

}

A drawing canvas
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Quick drawing example
public class MyCanvas extends JComponent {

public MyCanvas() {

this.setBackground(Color.WHITE);

}

public void paintComponent(Graphics g) {

super.paintComponent(g);

g2.setPaint(Color.BLUE);

g2.fillOval(10, 10, 20, 50);

}

}
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Graphics methods

draw any following text with the given fontsetFont(font)

an image at the given x/y position and sizedrawImage(Image, x, y, [w, h], panel)

text with bottom-left at (x, y)drawString(text, x, y)

outline largest oval that fits in a box of size width * 

height with top-left at (x, y)

drawOval(x, y, width, height)

fill largest oval that fits in a box of size width * 

height with top-left at (x, y)

fillOval(x, y, width, height)

paint any following shapes in the given colorsetColor(color)

fill rectangle of size width * height with top-left at 

(x, y)

fillRect(x, y, width, height)

outline of rectangle of size

width * height with top-left at (x, y)

drawRect(x, y, width, height)

line between points (x1, y1), (x2, y2)drawLine(x1, y1, x2, y2)

DescriptionMethod name
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Graphics2D

• The Graphics object g passed to paintComponent is a 

"graphical context" object to draw on the component.

� The actual object passed in is a Graphics2D (can cast).

Graphics2D g2 = (Graphics2D) g;

•Graphics2D is a subclass of Graphics that adds new features, 

new shapes, matrix transformations, color gradients, etc.

� Added to Java in v1.2 to improve on the features of Graphics.

� Why didn't they just add the new methods and features to Graphics

directly?  Why did they bother to make it a separate class?

• Answer: Open-Closed Principle.  Graphics already worked just fine.

Why risk breaking it by adding new features to the same file?
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Graphics2D methods

sets "rendering hints" such as anti-aliasing and smoothingsetRenderingHint(

key, value)

descriptionmethod name

adds a transformation that will be applied to all shapestransform(t)

gives a slanted perspective to future drawn shapesshear(shx, shy)

moves any future drawn shapes by the given x/y amountstranslate(dx, dy)

resizes any future drawn shapes by the given x/y factorsscale(sx, sy)

rotates any future drawn shapes by the given angle (radians)rotate(angle)

returns or sets the current line stroke style used for drawing

(can be thin/thick, solid/dashed/dotted, etc.)

getStroke(),

setStroke(Stroke)

returns or sets the current paint used for drawing

(Color is one kind of Paint, but there are others)

getPaint(),

setPaint(Paint)

draws the outline and interior of a given shape objectfill(Shape)

draws the outline of a given shape object  (replaces drawRect, etc.)draw(Shape)
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Shapes (java.awt.geom)

• Arc2D.Double(x, y, w, h, start, extent, type)

An arc, which is a portion of an ellipse.

• Ellipse2D.Double(x, y, w, h)

• Line2D.Double(x1, y1, x2, y2)

Line2D.Double(p1, p2)

A line between two points.

• Rectangle2D.Double(x, y, w, h)

• RoundRectangle2D.Double(x, y, w, h, arcx, arcy)

• GeneralPath()

A customizable polygon.
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Methods of all shapes

descriptionmethod name

whether this shape touches the given rectangular regionintersects(x,y,w,h)

intersects(rectangle)

various corner or center coordinates within the shapegetCenterX/Y()

getMinX/Y()

getMaxX/Y()

a rectangle representing the bounding box around this shapegetBounds()

whether the given point is inside the bounds of this shapecontains(x, y)

contains(point)

contains(rectangle)
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Drawing with objects
public class MyCanvas extends JComponent {

public MyCanvas() {

this.setBackground(Color.WHITE);

}

public void paintComponent(Graphics g) {

super.paintComponent(g);

Graphics2D g2 = (Graphics2D) g;

Shape shape = new Ellipse2D.Double(10, 10, 20, 50);

g2.setPaint(Color.BLUE);

g2.fill(shape);

}

}
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Colors and paints
• Color (a simple single-colored paint)

� public Color(int r, int g, int b)

� public Color(int r, int g, int b, int alpha)

• a partially-transparent color (range 0-255, 0=transparent)

• GradientPaint (a smooth transition between 2 colors)

� public GradientPaint(float x1, float y1, Color

color1, float x2, float y2, Color color2)

• java.awt.TexturePaint

(use an image as a "paint" background)
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Strokes (pen styles)
Graphics2D

� public void setStroke(Stroke s)

Sets type of drawing pen (color, width, style)

that will be used by this Graphics2D.

• BasicStroke

A pen stroke for drawing outlines.

� public BasicStroke(float width)

� public BasicStroke(float width, int cap, int join)

� public BasicStroke(float width, int cap,

int join, float miterlimit, 

float[] dash, float dash_phase) 

• cap can be: CAP_BUTT, CAP_ROUND, CAP_SQUARE

• join can be: JOIN_BEVEL, JOIN_MITER, JOIN_ROUND
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Repainting

• Most canvases are drawing the state of fields, a model, etc.

� When the state updates, you must tell the canvas to re-draw itself.

� But you can't call its paintComponent method, because you don't 

have the Graphics g to pass.

� The proper way is to call repaint on the canvas instead:

public void repaint()

...

public void update(Observable o, Object arg) {

myView.repaint();  // perhaps this.repaint();

}
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Anti-aliasing

• Onscreen text and shapes can have jagged edges, or aliases.  These 

can be removed by smoothing, or anti-aliasing, the component.

� public void setRenderingHint(key, value)

� Example:

g2.setRenderingHint(

RenderingHints.KEY_ANTIALIASING,

RenderingHints.VALUE_ANTIALIAS_ON);
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Creating images

// import java.awt.image.*;

BufferedImage

A blank graphic image buffer surface onto which you can draw

� public BufferedImage(int w, int h, int type)

• where type is a constant such as BufferedImage.TYPE_INT_ARGB

� public Graphics getGraphics()

• returns a graphical pen for "drawing on" this image

� you can draw a BufferedImage onto the screen from within the 

paintComponent method of your canvas:

• g.drawImage(BufferedImage, x, y, this);


