CSE 331

Model/View Separation and Observer Pattern

slides created by Marty Stepp
based on materials by M. Ernst, S. Reges, D. Notkin, R. Mercer, Wikipedia

http://www.cs.washington.edu/331/

Model and view

e model: Classes in your system that are related to the internal
representation of the state and behavior of the system.

= often part of the model is connected to file(s) or database(s)
= examples (card game): Card, Deck, Player
= examples (bank system): Account, User, UserList

e view: Classes in that display the state of the model to the user.
= generally, this is your GUI (could also be a text Ul)
= should not contain crucial application data
= Different views can represent the same data in different ways
e Example: Bar chart vs. pie chart
= examples: PokerGUI, PacManCanvas, BankApplet

_ J

Model-view-controller

e model-view-controller (MVC): Design paradigm for graphical
systems that promotes strict separation between model and view.

e controller: classes that connect model and view
= defines how user interface reacts to user input (events)
" receives messages from view (where events come from)
= sends messages to model (tells what data to display)

data for
rendering _
Model > View
View
Component
@: updates events
Controller

_ /)

Model/view separation

e Your model classes should NOT:
= import graphical packages (java.awt.*, javax.swing.*)
= store direct references to GUI classes or components
= know about the graphical classes in your system
= store images, or names of image files, to be drawn

drive the overall execution of your program

e Your view/controller classes should:
= store references to the model class(es)
= call methods on the model to update it when events occur

e Tricky part: Updating all aspects of the view properly when the state
of the model changes...
- © /

4

Pattern: Observer

objects that listen for updates to the state of others

.

Observer pattern

e observer: An object that "watches" the state of another object and
takes action when the state changes in some way.

e Problem: You have a model object with a complex state, and the
state may change throughout the life of your program.

= You want to update various other parts of the program when the
object's state changes.

e Solution: Make the complex model object observable.

e observable object: An object that allows observers to examine it
(notifies its observers when its state changes).

= Permits customizable, extensible event-based behavior for data
modeling and graphics.

_ J

Benefits of observer

e Abstract coupling between subject and observer; each can be
extended and reused individually.

e Dynamic relationship between subject and observer; can be
established at run time (can "hot-swap" views, etc) gives more
programming flexibility.

e Broadcast communication: Notification is broadcast automatically to
all interested objects that subscribed to it.

e Can be used to implement model-view separation in Java easily.

_ /

7

Observer sequence diagram

Wigw

Contraller
(optionall

I
—1

I
key, mause, ar action event :
|
|

perfarm apprapriate action on madel

petform appropriate action

LUpdateiahg

repaint to show new model state

|

notifvohservers{ang)

_

Observer interface

// import java.util.x*;

public interface Observer {
public void update (Observable o, Object arqg);

J

public class Observable { ... }

e Basic idea:

= Make your view code implement Observer.
= Make your main model class extend Observable.

= Attach the view to the model as an observer.

" The view's update method will be called when the observable model

changes, so write code to handle the change inside update.

/

9

Observable class

Method name

Description

addObserver (Observer)

adds an Observer to this object; its update method is
called when notifyObservers is called

deleteObserver (Observer)

removes an Observer from this object

notifyObservers ()

notifyObservers (arg)

inform all observers about a change to this object;
can pass optional object with more information

setChanged ()

flags that this object's state has changed; must be
called prior to each call to notifyObservers

10

Multiple views

e Make an Observable model.

e \Write an abstract View superclass which isa JComponent.
" make View an observer

e Extend View for all of your actual views.

= Give each its own unique inner components and code to draw the
model's state in its own way.

e Provide a mechanism in GUI to set the view (perhaps via menus).
= To set the view, attach it to observe the model.

11

Multiple views examples

e File explorer (icon view, list view, details view)

e Games (overhead view, rear view, 3D view)

e Graphs and charts (pie chart, bar chart, line chart)

OHLC Chart

;f

I

|

Ba-m:l Char‘t

=\. \J‘\AJ

Bubble Chart

o Bar Cha4't

Exploded Pie Slice Chart

Epeder Chart

Stacked Bar Chart

i

MM EENEANALE

Multi Pare Chart

- g
. -
|||||I|l||m1.n|| ut[ﬂ||||
Arrow CI‘I&I’T

=

User Accounts (2):1 = Solaris Management Console 2.0)¢
Console Edit fction Miew Go

Eelp

i Fradmin
& rcadmin
i caemaon
g bin
i svs

[SI" ser Accounts (2):2
Console Edit Action _u'mw Go ﬂelp

Marne

| Type

| Dezcripticn |

@oadm Sobuis Admin

-I;m Uzers)

& o Lina F'nnte-r.ﬂu::l in T _
douucp Snm User ACCo
& nuu.. Sof Sensele Edit ﬂtlén glaw G ﬂelp ﬂrm:-t
4 wucp Sof|£] Teelbex: buutnere:8RBACoboxes/smE WHHTiS Gomputer oy |
it opuL.. S0 h ﬁ ﬁ h
g .
ook dadmin madrmin resdmin
S S S W
Hasmmon L CE =i £
F-3 A

A A
i| 16 User(s) q |

12

Model/view exercise

e Let's develop a graphical game of Rock-Paper-Scissors.
= Write a GUI for the game using Swing.
= Represent the game state as a model separate from the view.
= Make the model observable and make the view observe it.

Well, £his 15
\an\ o€ awkward ...

13

