
1

CSE 331

Subtyping

slides created by Marty Stepp

based on materials by M. Ernst, S. Reges, D. Notkin, R. Mercer, Wikipedia

http://www.cs.washington.edu/331/

2

Subtyping

• subtype: A datatype that is related to another datatype (supertype)

by some notion of substitutability, such that program constructs

written to operate on elements of the supertype can also operate

on elements of the subtype.

� If S is a subtype of T, any term of type S can be safely used in a context

where a term of type T is expected.

• Subtyping expresses the following:

� "B is a subtype of A if every object that satisfies the specification and

interface for B also satisfies the specification and interface for A."

• Goal: code using A's specification operates correctly if given a B.

3

Substitution

• Subtypes must be substitutable for supertypes.

Instances of a subtype must not surprise a client by:

• failing to satisfy the supertype's specification

• having more expectations than the supertype's specification.

• B is a true subtype of A if B has a stronger specification than A.

� This is not the same as a Java subclass.

• Java subclasses that are not true subtypes are dangerous.

� OO Design Heuristic #55: Whenever there is inheritance in an OO

design, ask yourself two questions:

• (a) Am I a special type of the thing from which I am inheriting?

• (b) Is the thing from which I am inheriting part of me?

4

Subtyping example
public class Rectangle {

public int getArea()

public int getHeight()

public int getPerimeter()

public int getWidth()

public void setHeight(int height)

public void setSize(int width, int height)

public void setWidth(int width)

}

• From basic geometry, we know that every square is a rectangle.

� If we make a Square class, should it extend Rectangle ?

5

Square/Rect relationship

•Square is not a (true subtype of) Rectangle:

� Rectangles are expected to have a width and height

that can be changed independently

� Squares violate that expectation; surprises client

•Rectangle is not a (true subtype of) Square:

� Squares are expected to have equal widths and heights

� Rectangles violate that expectation; surprises client

• Solutions:

� Make them unrelated

� Make them siblings under a common parent

� Make them immutable

Rectangle

Square

Square

Rectangle

Shape

Square Rectangle

6

Bad subtypes in JDK
public class Hashtable<K, V> { // basically a Map

public V get(K key)

public void put(K key, V value)

}

// A class for saving/loading string key/value settings.

public class Properties extends Hashtable<Object, Object> {

public void setProperty(String key, String val) {

this.put(key, val);

}

public String get(String key) {

return (String) super.get(key);

}

public String getProperty(String key) {

return (String) this.get(key);

}

}

� What is wrong with this design?

7

Breaking Properties
Hashtable tbl = new Properties();

tbl.put("oops", new Integer(1));

tbl.getProperty("oops"); // ClassCastException

� The Properties object is a Hashtable and can be used as one.

� But it does not behave properly when it is used as a Hashtable if

you perform some Hashtable operations on it.

• From Properties Javadoc (they seem to know it's bad!):

� "Because Properties inherits from Hashtable, the put and

putAll methods can be applied to a Properties object. ... If the

store or save method is called on a 'compromised' Properties

object that contains a non-String key or value, the call will fail."

8

Solution: Composition

• Instead of having Properties extend Hashtable, have it use a

Hashtable internally.

� Effective Java Tip #16: Favor composition over inheritance.

public class Properties {

private Hashtable<Object, Object> hashtable;

// Associates the specified value with specified key.

// requires: key and value are not null

// modifies: this

public void setProperty (String key, String value) {

hashtable.put(key,value);

}

// Returns string with which given key is associated.

public String getProperty (String key) {

return (String) hashtable.get(key);

}

...

}

9

Liskov Substitution Principle

• Liskov Substitution Principle: If B is a subtype of A, a B must always

be able to be substituted for an A.

� Any property guaranteed by A must be guaranteed by B as well.

• The subtype is permitted to strengthen and add properties.

• Anything provable about an A is provable about a B.

� If an instance of the subtype is treated purely as the supertype -- only

supertype methods and fields queried -- then the result should be

consistent with an object of the supertype being manipulated.

• No specification weakening allowed:

� No method removal

� No overriding methods with stronger preconditions or weaker /

incompatible postconditions

10

Substitution continued

• Each overriding method must:

� Ask nothing extra of the client (weaker precondition).

� Guarantee at least as much (stronger postcondition).

• No new objects modified or new changes to "this".

• Method parameters (inputs):

� May be replaced with supertypes ("contravariance").

• Method returns (outputs/results):

� May be replaced with a subtype ("covariance").

• Method exceptions:

� No new exceptions may be added to any overridden headers.

� Existing exceptions can be replaced with subtypes.

11

Subtyping exercise

• Suppose a method connects couples on a dating site:

public class DatingSiteUser {

public Couple date(DatingSiteUser u)

}

• Which of these are valid methods in subclass PremiumUser ?

� a) public Couple date(PremiumUser u)

� b) public PremiumUser date(DatingSiteUser u)

� c) public Couple date(Object u)

� d) public Couple date(DatingSiteUser u)

throws UndateableSlobException

� Answers: a NO; b YES; c OK but overloaded; d NO

12

Bad subtypes in Java
public class Hashtable<K, V> { // basically a Map

public V get(K key)

public void put(K key, V value)

}

// A class for easily save/loading string key/value settings.

public class Properties extends Hashtable<Object, Object> {

public void setProperty(String key, String val) {

this.put(key, val);

}

public String get(String key) {

return (String) super.get(key);

}

public String getProperty(String key) {

return (String) this.get(key);

}

}

Result type is a subtype

Stronger guarantee = OK

Arguments are subtypes

Stronger requirement =
weaker specification!

Can throw an exception

New exception = weaker spec!

13

Revealing implementation

• Consider the following subclass of HashSet:

public class CountingHashSet<E> extends HashSet<E> {

private int addCount = 0; // count (attempted) adds

public CountingHashSet(Collection<? extends E> c) {

super(c);

}

public boolean add(E o) {

addCount++;

return super.add(o);

}

public boolean addAll(Collection<? extends E> c) {

addCount += c.size();

return super.addAll(c);

}

public int getAddCount() { return addCount; }

}

14

Depending on implementation

• What does this code print?
Set<String> s = new CountingHashSet<String>();

s.addAll(Arrays.asList("CSE", "331"));

System.out.println(s.getAddCount());

• Answer depends on implementation of addAll in HashSet:

� If HashSet.addAll calls add ? Elements will be counted twice.

•addAll specification from Java API Specs:

� "Adds all of the elements in the given collection to this collection."

� (Does not specify whether it calls add .)

• fragile base class problem: When subclasses depend on the

unspecified implementation details of their superclass.

15

Using composition

• This version of CountingHashSet keeps a proper count:

public class CountingHashSet<E> {

private final HashSet<E> s;

private int addCount = 0;

public CountingHashSet(Collection<? extends E> c) {

s = new HashSet<E>();

addAll(c);

}

public boolean add(E o) {

addCount++; return s.add(o);

}

public boolean addAll(Collection<? extends E> c) {

addCount += c.size(); return s.addAll(c);

}

public int getAddCount() { return addCount; }

// ... and every other method in HashSet<E>

}

16

Regaining subtyping

• The composition version of CountingHashSet is suboptimal

because it has lost its type relationship to HashSet.

� Can't interchange HashSet and CountingHashSet in code.

• Solution: Use an interface .

public class CountingHashSet<E> implements Set<E> {

private final HashSet<E> s;

private int addCount = 0;

public CountingHashSet(Collection<? extends E> c) {

s = new HashSet<E>();

addAll(c);

}

// ...

}

What about this constructor?

public CountingHashSet(Set<E> s) {

this.s = s;

addCount = s.size();

}

17

Class design question

• What's wrong with the design of this class?

public class DatingSiteUser {

...

public double getSubscriptionPrice() {

if (this instanceof PremiumUser) {

return 2.00 * months;

} else if (this instanceof TrialUser) {

return 50.00;

} else {

return 4.00 * months;

} } }

� OO Design Heuristic #37: Derived classes must have knowledge of

their base class by definition, but base classes should not know

anything about their derived classes.

� OO Design Heuristic #46. Case analysis on the type of an object is

usually an error. The designer should use polymorphism instead.

