
1

CSE 331

Design Patterns 2:

Prototype, Factory

slides created by Marty Stepp

based on materials by M. Ernst, S. Reges, D. Notkin, R. Mercer

http://www.cs.washington.edu/331/

2

Pattern: Prototype

An object that serves as a basis for creation of others

3

Objects as prototypes

• prototype: An object that serves as a template or model to assist in

the creation of other similar/equal objects.

• Problem: Client wants another object similar to an existing one, but

doesn't care about the details of the state of that object.

� Sometimes client doesn't even care about the object's exact type.

• Solution: Clone or copy the object's state into a new object, modify

as needed, then use it.

� Often closely related to Java's clone method.

� Sometimes done with producer methods that return new objects.

(Prototype is a creational pattern.)

4

Scenario: Store products

• Suppose a store has a hierarchy of classes representing products.

public class Product {...}

public class Book extends Product {...}

public class DVD extends Product {...}

� The store keeps a large catalog of all products by ID.

• Customers want to buy products from the catalog and put them into

their shopping carts.

� The add-to-cart code doesn't want to worry about what kind of

product is being bought, its state, etc.

� We don't want to add the original product to the customer's cart,

because it is mutable and they will modify its price/status/etc.

5

Prototype store products

• The following code gives each customer his own product copy:

// maps from product IDs to the products themselves

private Map<Integer, Product> catalog;

...

public void addToCart(ShoppingCart cart,

int id, double price) {

Product p = catalog.get(id);

p = p.clone(); // make a copy for this user

p.setPrice(price);

cart.add(p);

}

6

Prototype producer method

• Sometimes the object serves as a prototype by supplying producer

method(s) that return new objects similar to itself:

public class Product implements Cloneable {

...

public Product clone() { ... }

// a new product like this one, but half price

public Product halfPrice() {

Product copy = this.clone();

copy.setPrice(this.getPrice() / 2);

return copy;

}

}

7

Drawing fonts/colors

• Suppose we want to draw fonts/colors on a graphical window.

� We will make use of a CSE 142/143 class, DrawingPanel .

• To create a window:

DrawingPanel name = new DrawingPanel(width, height);

Example:

DrawingPanel panel = new DrawingPanel(300, 200);

• The window has nothing on it.

� We draw shapes / lines on it with

another object of type Graphics.

8

Graphics

"Pen" or "paint brush" object to draw lines and shapes

� import java.awt.*; // needed to use Graphics

� Access it by calling getGraphics on your DrawingPanel.

Graphics g = panel.getGraphics();

• Draw shapes by calling methods

on the Graphics object.

g.fillRect(10, 30, 60, 35);

g.fillOval(80, 40, 50, 70);

9

Graphics methods

draw any following text with the given fontg.setFont(font);

an image at the given x/y position and sizeg.drawImage(Image, x, y, [w, h], panel);

text with bottom-left at (x, y)g.drawString(text, x, y);

outline largest oval that fits in a box of size width

* height with top-left at (x, y)

g.drawOval(x, y, width, height);

fill largest oval that fits in a box of size width *

height with top-left at (x, y)

g.fillOval(x, y, width, height);

paint any following shapes in the given colorg.setColor(color);

fill rectangle of size width * height with top-left at

(x, y)

g.fillRect(x, y, width, height);

outline of rectangle of size

width * height with top-left at (x, y)

g.drawRect(x, y, width, height);

line between points (x1, y1), (x2, y2)g.drawLine(x1, y1, x2, y2);

DescriptionMethod name

10

Specifying colors

• Pass a Color to Graphics object's setColor method.

� Specified by constructor, using Red-Green-Blue (RGB) values 0-255:

Color brown = new Color(192, 128, 64);

� Or use predefined Color class constants:

Color.CONSTANT_NAME where CONSTANT_NAME is one of:

BLACK, BLUE, CYAN, DARK_GRAY, GRAY, GREEN, LIGHT_GRAY,

MAGENTA, ORANGE, PINK, RED, WHITE, YELLOW

� Or create a new color, using an existing color as a prototype:

public Color brighter()

public Color darker()

11

Specifying fonts

• Pass a Font to Graphics object's setFont method.

� Specified by the Font constructor:

public Font(String name, int style, int size)

• Styles are represented as integer constants in the Font class:

public static final int PLAIN

public static final int BOLD

public static final int ITALIC

� Or create a new font, using an existing font as a prototype:

•public Font deriveFont(float size)

•public Font deriveFont(int style, float size)

12

Pattern: Factory

A method or object that creates other objects

13

Factory pattern

• factory: A method or object whose primary purpose is to manage

the creation of other objects (usually of a different type).

• Problem: Object creation is cumbersome or heavily coupled for a

given client. Client needs to create but doesn't want the details.

• Factory Method pattern

� A helper method that creates and returns the object(s).

� Can return subclass objects if so desired (hidden from client).

• Abstract Factory pattern

� A hierarchy of classes/objects, each of which is a factory for a type.

� Allows hot-swappable factory to be used by a given client.

(Factory is a creational pattern.)

14

DateFormat as a factory

•DateFormat class knows how to format dates/times as text

� Options: Just date? Just time? Date+time? Where in the world?

� Instead of passing all options to constructor, use factories.

� The subtype created doesn't need to be specified.

DateFormat df1 = DateFormat.getDateInstance();

DateFormat df2 = DateFormat.getTimeInstance();

DateFormat df3 = DateFormat.getDateInstance(

DateFormat.FULL, Locale.FRANCE);

Date today = new Date();

System.out.println(df1.format(today)); // "Apr 20, 2011"

System.out.println(df2.format(today)); // "10:48:00 AM"

System.out.println(df3.format(today));

// "mecredi 20 avril 2011"

15

Border factory

• Java graphical components like DrawingPanel can have borders:

public void setBorder(Border border)

• But Border is an interface; cannot construct a new Border .

� There are many different kinds of borders (classes).

• Instead, use the provided BorderFactory class to create them:
public static Border createBevelBorder(...)

public static Border createEtchedBorder(...)

public static Border createLineBorder(...)

public static Border createMatteBorder(...)

public static Border createTitledBorder(...)

� Avoids a constructor that takes too many "option / flag" arguments.

16

Scenario: Drawing images

• Suppose we want to display images on a graphical window.

• The Graphics object has a drawImage method:

� public void drawImage(Image img, int x, int y, panel)

� public void drawImage(Image img, int x, int y,

int w, int h, panel)

• Images are hard drive files in a given format:

� GIF, JPEG, PNG, BMP, TIFF, ...

• So how do we get an Image object to draw?

• Can't simply say new Image :

� Image img = new Image("bobafett.gif"); // error

17

Toolkits

•Toolkit is a class for GUI system info and resource loading.

• Java handles loading of images through Toolkits:

� public Image getImage(String filename)

� public Image getImage(URL url)

• Can't simply say new Toolkit :

� Toolkit tk = new Toolkit(); // error

• Have to call a static method to get a toolkit (Why? What is this?):

� public static Toolkit getDefaultToolkit()

� Toolkit tk = Toolkit.getDefaultToolkit(); // ok

18

Buggy image client

• The following well-intentioned client does not show the images:

public static void main(String[] args) {

Toolkit tk = Toolkit.getDefaultToolkit();

Image img1 = tk.getImage("calvin.gif");

Image img2 = tk.getImage("cuteicecream.jpg");

Image img3 = tk.getImage("tinman.png");

DrawingPanel panel = new DrawingPanel(600, 500);

Graphics g = panel.getGraphics();

g.drawImage(img1, 0, 0, panel);

g.drawImage(img2, 200, 50, panel);

g.drawImage(img3, 400, 200, panel);

}

19

Media trackers

• When you tell a toolkit to load an image, it doesn't actually do so.

� It simply buffers a request to eventually load the image.

� If you try to draw the image too quickly, it won't be loaded yet.

• Java uses media tracker objects to wait for an image to load:

� public MediaTracker(panel)

� public void addImage(Image img, int id)

� public void removeImage(Image img)

� public void removeImage(Image img, int id)

� public void waitForAll() **

� public void waitForAll(long ms) **

� public void waitForID(int id) **

� public void waitForID(int id, long ms) **

** throws InterruptedException

20

Media tracker example
public static void main(String[] args) {

Toolkit tk = Toolkit.getDefaultToolkit();

Image img1 = tk.getImage("calvin.gif");

Image img2 = tk.getImage("cuteicecream.jpg");

Image img3 = tk.getImage("tinman.png");

MediaTracker mt = new MediaTracker(panel);

mt.addImage(img1, 1);

mt.addImage(img2, 2);

mt.addImage(img3, 3);

try {

mt.waitForAll();

} catch (InterruptedException e) {}

DrawingPanel panel = new DrawingPanel(600, 500);

Graphics g = panel.getGraphics();

g.drawImage(img1, 0, 0, panel);

g.drawImage(img2, 200, 50, panel);

g.drawImage(img3, 400, 200, panel);

}

21

Image loading factory

• The preceding code is too cumbersome to write every time we want

to load an image.

� Let's make a factory method to load images more easily:

public static Image loadImage(

String filename, DrawingPanel panel) {

Toolkit tk = Toolkit.getDefaultToolkit();

Image img = tk.getImage(filename);

MediaTracker mt = new MediaTracker(panel);

mt.addImage(img, 0);

try {

mt.waitForAll();

} catch (InterruptedException e) {}

return img;

}

22

A factory class

• Factory methods are often put into their own class for reusability:

public class ImageFactory {

public static Image loadImage(

String filename, DrawingPanel panel) {

Toolkit tk = Toolkit.getDefaultToolkit();

Image img = tk.getImage(filename);

MediaTracker mt = new MediaTracker(panel);

mt.addImage(img, 0);

try {

mt.waitForAll();

} catch (InterruptedException e) {}

return img;

}

public static Image loadImage(

File file, DrawingPanel panel) {

return loadImage(file.toString(), panel);

}

}

23

Exercise: Caching factory

• Loading large images from the disk repeatedly can be slow.

• Write a modified version of the image factory that caches images so

that it does not ever have to re-load the same image file twice.

• Things to think about:

� Can you think of any cases where caching would not be desired?

� How could we provide the client the ability to turn caching on/off?

� Can we make this decision transparent to most client code, settable in

a single place?

• Another possibility: A factory that loads images from URLs.

24

Abstract Factory pattern

• abstract factory: A superclass factory that can be extended to

provide different sub-factories, each with different features.

� Often implemented with an abstract superclass.

� Idea: Client is given an instance of ImageFactory, which will

actually be a Standard or Caching ImageFactory.

� Client just uses it and doesn't worry about which one it was given.

25

Abstract factory code
public abstract class ImageFactory {

public abstract Image loadImage(

String filename, DrawingPanel panel);

}

public class StandardImageFactory extends ImageFactory {

public Image loadImage(String filename,

DrawingPanel panel) { ... }

}

public class CachingImageFactory extends ImageFactory {

public Image loadImage(String filename,

DrawingPanel panel) { ... }

}

public class WebImageFactory extends ImageFactory {

public Image loadImage(String filename,

DrawingPanel panel) { ... }

}

