
1

CSE 331

Design Patterns 1:

Iterator, Adapter, Singleton, Flyweight

slides created by Marty Stepp

based on materials by M. Ernst, S. Reges, D. Notkin, R. Mercer

http://www.cs.washington.edu/331/

2

Design patterns

• design pattern:

A standard solution to a common software problem in a context.

� describes a recurring software structure or idiom

� is abstract from any particular programming language

� identifies classes and their roles in the solution to a problem

• in 1990 a group called the Gang of Four or "GoF"

(Gamma, Helm, Johnson, Vlissides) compile a

catalog of design patterns

� 1995 book Design Patterns:

Elements of Reusable Object-Oriented

Software is a classic of the field

3

Benefits of using patterns

• Patterns give a design common vocabulary for software design:

� Allows engineers to abstract a problem and talk about that abstraction

in isolation from its implementation.

� A culture; domain-specific patterns increase design speed.

• Capture expertise and allow it to be communicated:

� Promotes design reuse and avoid mistakes.

� Makes it easier for other developers to understand a system.

• Improve documentation (less is needed):

� Improve understandability (patterns are described well, once).

4

Gang of Four (GoF) patterns

• Creational Patterns (abstracting the object-instantiation process)

� Factory Method Abstract Factory Singleton

� Builder Prototype

• Structural Patterns (how objects/classes can be combined)

� Adapter Bridge Composite

� Decorator Facade Flyweight

� Proxy

• Behavioral Patterns (communication between objects)

� Command Interpreter Iterator

� Mediator Observer State

� Strategy Chain of Responsibility Visitor

� Template Method

5

Describing a pattern

• Problem: In what situation should this pattern be used?

• Solution: What should you do? What is the pattern?

� describe details of the objects/classes/structure needed

� should be somewhat language-neutral

• Advantages: Why is this pattern useful?

• Disadvantages: Why might someone not want this pattern?

6

Pattern: Iterator

objects that traverse collections

7

Iterator pattern

• Problem: To access all members of a collection, must perform a

specialized traversal for each data structure.

� Introduces undesirable dependences.

� Does not generalize to other collections.

• Solution:

� Provide a standard iterator object supplied by all data structures.

� The implementation performs traversals, does bookkeeping.

• The implementation has knowledge about the representation.

� Results are communicated to clients via a standard interface.

• Disadvantages:

� Iteration order is fixed by the implementation, not the client.

� Missing various potentially useful operations (add, set, etc.).

8

Pattern: Adapter

an object that fits another object into a given interface

9

Adapter pattern

• Problem: We have an object that contains the functionality we

need, but not in the way we want to use it.

� Cumbersome / unpleasant to use. Prone to bugs.

• Example:

� We are given an Iterator, but not the collection it came from.

� We want to do a for-each loop over the elements,

but you can't do this with an Iterator, only an Iterable:

public void printAll(Iterator<String> itr) {
// error: must implement Iterable

for (String s : itr) {
System.out.println(s);

} }

10

Adapter in action

• Solution: Create an adapter object that bridges the provided and

desired functionality.

public class IterableAdapter implements Iterable<String> {

private Iterator<String> iterator;

public IterableAdapter(Iterator<String> itr) {

this.iterator = itr;

}

public Iterator<String> iterator() {
return iterator;

}
}

...

public void printAll(Iterator<String> itr) {

IterableAdapter adapter = new IterableAdapter(itr);

for (String s : adapter) { ... } // works
}

11

Pattern: Singleton

A class that has only a single instance

12

Creational Patterns

• Constructors in Java are inflexible:

� Can't return a subtype of the class they belong to.

� Always returns a fresh new object; can never re-use one.

• Creational factories:

� Factory method

� Abstract Factory object

� Prototype

� Dependency injection

• Sharing:

� Singleton

� Interning

� Flyweight

13

Restricting object creation

• Problem: Sometimes we really only ever need (or want) one

instance of a particular class.

� Examples: keyboard reader, bank data collection, game, UI

� We'd like to make it illegal to have more than one.

• Issues:

� Creating lots of objects can take a lot of time.

� Extra objects take up memory.

� It is a pain to deal with different objects floating around if they are

essentially the same.

� Multiple objects of a type intended to be unique can lead to bugs.

• What happens if we have more than one game UI, or account manager?

14

Singleton pattern
• singleton: An object that is the only object of its type.

(one of the most known / popular design patterns)

� Ensuring that a class has at most one instance.

� Providing a global access point to that instance.

• e.g. Provide an accessor method that allows users to see the instance.

• Benefits:

� Takes responsibility of managing that instance away from the
programmer (illegal to construct more instances).

� Saves memory.

� Avoids bugs arising from multiple instances.

15

Restricting objects

• One way to avoid creating objects: use static methods

� Examples: Math, System

� Is this a good alternative choice? Why or why not?

• Disadvantage: Lacks flexibility.

� Static methods can't be passed as an argument, nor returned.

• Disadvantage: Cannot be extended.

� Example: Static methods can't be subclassed and overridden like an

object's methods could be.

16

• Make constructor(s) private so that they can not be called from

outside by clients.

• Declare a single private static instance of the class.

• Write a public getInstance() or similar method that allows

access to the single instance.

� May need to protect / synchronize this method to ensure that it will

work in a multi-threaded program.

Implementing Singleton

17

Singleton sequence diagram

18

• Class RandomGenerator generates random numbers.

public class RandomGenerator {

private static final RandomGenerator gen =
new RandomGenerator();

public static RandomGenerator getInstance() {

return gen;

}

private RandomGenerator() {}

...

}

Singleton example

19

• Can wait until client asks for the instance to create it:

public class RandomGenerator {

private static RandomGenerator gen = null;

public static RandomGenerator getInstance() {

if (gen == null) {

gen = new RandomGenerator();

}

return gen;

}

private RandomGenerator() {}

...

}

Lazy initialization

20

• Comparators make great singletons because they have no state:

public class LengthComparator

implements Comparator<String> {

private static LengthComparator comp = null;

public static LengthComparator getInstance() {

if (comp == null) {

comp = new LengthComparator();

}

return comp;

}

private LengthComparator() {}

public int compare(String s1, String s2) {

return s1.length() - s2.length();

}

}

Singleton Comparator

21

Pattern: Flyweight

a class that has only one instance for each unique state

22

Redundant objects

• Problem: Redundant objects can bog down the system.

� Many objects have the same state.

� example: File objects that represent the same file on disk

• new File("mobydick.txt")

• new File("mobydick.txt")

• new File("mobydick.txt")

...

• new File("notes.txt")

� example: Date objects that represent the same date of the year

• new Date(4, 18)

• new Date(4, 18)

23

Flyweight pattern
• flyweight: An assurance that no more than one instance of a class

will have identical state.

� Achieved by caching identical instances of objects.

� Similar to singleton, but one instance for each unique object state.

� Useful when there are many instances, but many are equivalent.

� Can be used in conjunction with Factory Method pattern to create a
very efficient object-builder.

� Examples in Java: String, Image, Toolkit, Formatter,
Calendar, JDBC

24

Flyweight diagram

• Flyweighting shares objects and/or shares their internal state

� saves memory

� allows comparisons with == rather than equals (why?)

(Street-
Segment)

"Univ. Way"
(String)

"O2139"
(String)

101-200
(Street-

NumberSet)

(Street-
Segment)

"Univ. Way"
(String)

"O2139"
(String)

1-100
(Street-

NumberSet)

(Street-
Segment)

101-200
(Street-

NumberSet)

(Street-
Segment)

1-100
(Street-

NumberSet)

"Univ. Way"
(String)

"O2139"
(String)

StreetSegment
without interning

StreetSegment
without interning

StreetSegment
with interning

StreetSegment
with interning

25

Implementing a Flyweight

• Flyweighting works best on immutable objects. (Why?)

• Class pseudo-code sketch:

public class Name {

• static collection of instances

• private constructor

• static method to get an instance:

if (we have created this kind of instance before):

get it from the collection and return it.

else:

create a new instance, store it in the collection and return it.

}

26

Flyweight sequence diagram

27

Implementing a Flyweight

public class Flyweighted {

private static Map<KeyType, Flyweighted> instances

= new HashMap<KeyType, Flyweighted>();

private Flyweighted(...) { ... }

public static Flyweighted getInstance(KeyType key) {

if (!instances.contains(key)) {

instances.put(key, new Flyweighted(key));

}

return instances.get(key);

}

}

28

Class before flyweighting
public class Point {

private int x, y;

public Point(int x, int y) {

this.x = x;

this.y = y;

}

public int getX() { return x; }

public int getY() { return y; }

public String toString() {

return "(" + x + ", " + y + ")";

}

}

29

Class after flyweighting
public class Point {

private static Map<String, Point> instances =

new HashMap<String, Point>();

public static Point getInstance(int x, int y) {

String key = x + ", " + y;

if (!instances.containsKey(key)) {

instances.put(key, new Point(x, y));

}

return instances.get(key);

}

private final int x, y; // immutable

private Point(int x, int y) {

...

30

String flyweighting

• interning: Synonym for flyweighting; sharing identical instances.

� Java String objects are automatically interned (flyweighted) by the

compiler whenever possible.

� If you declare two string variables that point to the same literal.

� If you concatenate two string literals to match another literal.

String a = "neat";

String b = "neat";

String c = "n" + "eat";

• So why doesn't == always work with Strings?

taenString

31

Limits of String flyweight

String a = "neat";

Scanner console = new Scanner(System.in);

String b = console.next(); // user types "neat"

if (a == b) { ... // false

• There are many cases the compiler doesn't / can't flyweight:

� When you build a string later out of arbitrary variables

� When you read a string from a file or stream (e.g. Scanner)

� When you build a new string from a StringBuilder

� When you explicitly ask for a new String (bypasses flyweighting)

• You can force Java to flyweight a particular string with intern:

b = b.intern();

if (a == b) { ... // true

32

String interning questions
String fly = "fly"; String weight = "weight";

String fly2 = "fly"; String weight2 = "weight";

• Which of the following expressions are true?

a) fly == fly2

b) weight == weight2

c) "fly" + "weight" == "flyweight"

d) fly + weight == "flyweight"

String flyweight = new String("fly" + "weight");

e) flyweight == "flyweight"

String interned1 = (fly + weight).intern();

String interned2 = flyweight.intern();

f) interned1 == "flyweight"

g) interned2 == "flyweight"

