
1

CSE 331

Exceptions and Error-Handling

slides created by Marty Stepp

based on materials by M. Ernst, S. Reges, D. Notkin, R. Mercer, Wikipedia

http://www.cs.washington.edu/331/

2

Exceptions

• exception: An object representing an error.

� Other languages don't have this concept;

they represent errors by returning error codes

(null, -1, false, etc.).

• Are exceptions better? What are their benefits?

• throw: To cause an exception to occur.

� What are some actions that commonly throw exceptions?

• catch: To handle an exception.

� If an exception is thrown and no code catches it, the program's

execution will stop and an error trace will be printed.

� If the exception is caught, the program can continue running.

3

Code that throws exceptions

• dividing by zero:

int x = 0;

System.out.println(1 / x); // ArithmeticException

• trying to dereference a null variable:

Point p = null;

p.translate(2, -3); // NullPointerException

• trying to interpret input in the wrong way:

// NumberFormatException

int err = Integer.parseInt("hi");

• reading a non-existent file:

// FileNotFoundException

Scanner in = new Scanner(new File("notHere.txt"));

4

Exception avoidance

• In many cases, the best plan is to try to avoid exceptions.

// better to check first than try/catch without check

int x;

...

if (x != 0) {

System.out.println(1 / x);

}

File file = new File("notHere.txt");

if (file.exists()) {

Scanner in = new Scanner(file);

}

// can we avoid this one?

int err = Integer.parseInt(str);

5

Catching an exception
try {

statement(s);

} catch (type name) {

code to handle the exception

}

� The try code executes. If the given exception occurs, the try block

stops running; it jumps to the catch block and runs that.

try {

Scanner in = new Scanner(new File(filename));

System.out.println(input.nextLine());

} catch (FileNotFoundException e) {

System.out.println("File was not found.");

}

6

Throwing and catching

• At any time, your program has an active call stack of methods.

• When an exception is thrown, the

JVM looks up the call stack until

it finds a method with a

matching catch block for it.

� If one is found, control jumps

back to that method.

� If none is found, the program crashes.

• Exceptions allow non-local error handling.

� A method many levels up the stack can handle a deep error.

7

Catch, and then what?
public void process(String str) {

int n;

try {

n = Integer.parseInt(str);

} catch (NumberFormatException nfe) {

System.out.println("Invalid number: " + str);
}

...

• Possible ways to handle an exception:

� retry the operation that failed

� re-prompt the user for new input

� print a nice error message

� quit the program

� do nothing (!) (why? when?)

8

Exception methods
• All exception objects have these methods:

try {

readFile();

} catch (IOException e) {

System.out.println("I/O error: " + e.getMessage());

}

other methodsgetCause(), getStackTrace(),

printStackTrace()

DescriptionMethod

exception's type and descriptionpublic String toString()

text describing the errorpublic String getMessage()

9

Design and exceptions

• Effective Java Tip #57:

Use exceptions only for exceptional conditions.

� The author of the Integer.parseInt method got this wrong.

� Strings that are not legal as ints are common (not "exceptional").

• (What should they have done instead?)

// Can we avoid this one? Not really. :-(

int n;

try {

n = Integer.parseInt(str);

} catch (NumberFormatException nfe) {

n = -1;

}

10

Ignoring exceptions

• Effective Java Tip #65: Don't ignore exceptions.

� An empty catch block is (a common) poor style.

• often done to get code to compile or hide an error

try {

readFile(filename);

} catch (IOException e) {} // do nothing on error

� At a minimum, print out the exception so you know it happened.

} catch (IOException e) {

e.printStackTrace(); // just in case

}

11

Catch multiple exceptions
try {

statement(s);

} catch (type1 name) {

code to handle the exception

} catch (type2 name) {

code to handle the exception

...

} catch (typeN name) {

code to handle the exception

}

� You can catch more than one kind of exception in the same code.

� When an exception is thrown, the matching catch block (if any) is used.

� If multiple catch blocks match, the most specific match is chosen.

12

Exception inheritance

• All exceptions extend from a common superclass Exception

13

Some common exceptions
• ArithmeticException

• BufferOverflowException

• ClassCastException

• ClassNotFoundException

• CloneNotSupportedException

• ConcurrentModificationException

• EmptyStackException

• IllegalArgumentException

• IllegalStateException

• IndexOutOfBoundsException

• InterruptedException

• IOException

� EOFException,
FileNotFoundException,
InterruptedIOException,
MalformedURLException, ...

� ... NotSerializableException,
SocketException, SSLException,
UnknownHostException,
ZipException

• JarException

• MalformedURLException

• NegativeArraySizeException

• NoSuchElementException

• NullPointerException

• ProtocolException

• RuntimeException

• SecurityException

• UnknownElementException

• UnsupportedOperationException

• see also:
http://mindprod.com/jgloss/exception.html

14

Inheritance and exceptions

• You can catch a general exception to handle any subclass:

try {

Scanner input = new Scanner(new File("foo"));

System.out.println(input.nextLine());
} catch (Exception e) {

System.out.println("File was not found.");
}

• Similarly, you can state that a method throws any exception:

public void foo() throws Exception { ...

� Are there any disadvantages of doing so?

15

Catching with inheritance
try {

statement(s);

} catch (FileNotFoundException fnfe) {

code to handle the file not found exception

} catch (IOException ioe) {

code to handle any other I/O exception

} catch (Exception e) {

code to handle any other exception

}

� a SocketException would match the second block

� an ArithmeticException would match the third block

16

Who should catch it?

• The code that is able to handle the error properly should be the

code that catches the exception.

� Sometimes this is not the top method on the stack.

• Example:

� main → showGUI() → click() → readFile() → FileNotFoundException!

• Which method should handle the exception, and why?

� main → new PokerGame() → new Player() → loadHistory() →

Integer.parseInt() -> NumberFormatException

• Which method should handle the exception, and why?

17

Throwing an exception

throw new ExceptionType("message");

• It is common practice to throw exceptions on unexpected errors.

public void deposit(double amount) {

if (amount < 0.0) {

throw new IllegalArgumentException();
}

balance += amount;

}

� Why throw rather than just ignoring the negative value?

• Why not return a special error code, such as -1 or false?

18

Good throwing style

• An exception can accept a String parameter for a message

describing what went wrong.

� This is the string returned by getMessage in a catch block.

public void deposit(double amount) {

if (amount < 0.0) {

throw new IllegalArgumentException(

"negative deposit: " + amount);
}

balance += amount;

}

• EJ Tip #63: Include failure-capture information in detail messages.

� Tell the caller what went wrong, to help them fix the problem.

19

Commenting exceptions

• If your method throws, always explain this in the comments.

� State the types of exceptions thrown and under what conditions.

// Places the given amount of money into this account.

// Throws an IllegalArgumentException on negative deposits.
public void deposit(double amount) {

if (amount < 0.0) {

throw new IllegalArgumentException(

"negative deposit: " + amount);

}

balance += amount;

}

• EJ Tip #62: Document all exceptions thrown by each method.

� The client must know this in order to avoid or catch the exceptions.

20

Checked exceptions

• Java has two major kinds of exceptions:

� checked exceptions: Ones that MUST be handled by a try/catch

block (or throws clause) or else the program will not compile.

• Meant for serious problems that the caller ought to deal with.

• Subclasses of Exception in the inheritance tree.

� runtime exceptions: Ones that don't have to be

handled; if not handled, the program halts.

• Meant for smaller errors or programmer errors.

• Subclasses of RuntimeException in the tree.

• Mistakes that could have been avoided by a test.

� check for null or 0, check if a file exists, check array's bounds, ...

21

The throws clause
public type name(parameters) throws type {

• A clause in a method header claiming it may cause an exception.

� Needed when a method may throw an uncaught checked exception.

public void processFile(String filename)

throws FileNotFoundException {

� The above means one of two possibilities:

•processFile itself might throw an exception.

•processFile might call some sub-method that throws an exception,

and it is choosing not to catch it (rather, to re-throw it out to the caller).

22

Writing an exception class

• EJ Tip #61: Throw exceptions appropriate to the abstraction.

� When no provided exception class is quite right for your app's kind of

error, you should write your own Exception subclass.

// Thrown when the user tries to play after the game is over.

public class GameOverException extends RuntimeException {

private String winner;

public GameOverException(String message, String winner) {

super(message);
this.winner = winner;

}

public String getWinner() {

return winner;

}

}

// in Game class...

if (!inProgress()) {

throw new GameOverException("Game already ended", winner);

23

Checked exceptions suck!

• EJ Tip #59: Avoid unnecessary use of checked exceptions.

� Checked exceptions are (arguably) a wart in the Java language.

� It should be the client's decision whether or not to catch exceptions.

� When writing your own exception classes, extend

RuntimeException so that it doesn't need to be caught unless the

client wants to do so.

• Some cases still require throwing checked exceptions (e.g. file I/O)

public void play() throws Exception { // no

public void play() throws RuntimeException { // better

public void play() throws MP3Exception { // best

public class MP3Exception extends RuntimeException { ... }

24

Problem: redundant code
public void process(OutputStream out) {

try {

// read from out; might throw

...

out.close();

} catch (IOException e) {

out.close();

System.out.println("Caught IOException: "

+ e.getMessage());

}

}

� The close code appears redundantly in both places.

� Can't move it out below the try/catch block because close itself

could throw an IOException.

25

The finally block
try {

statement(s);
} catch (type name) {

code to handle the exception
} finally {

code to run after the try or catch finishes
}

� finally is often used for common "clean-up" code.

try {

// ... read from out; might throw

} catch (IOException e) {

System.out.println("Caught IOException: "

+ e.getMessage());

} finally {
out.close();

}

• The catch block is optional; try/finally is also legal.

26

Exceptions and errors

• There are also Errors, which represent serious Java problems.

� Error and Exception have common superclass Throwable.

� You can catch an Error (but you probably shouldn't)

27

Common errors
• AbstractMethodError

• AWTError

• ClassFormatError

• ExceptionInInitializerError

• IllegalAccessError

• InstantiationError

• InternalError

• LinkageError

• NoClassDefFoundError

• NoSuchFieldError

• NoSuchMethodError

• OutOfMemoryError

• ServerError

• StackOverflowError

• UnknownError

• UnsatisfiedLinkError

• UnsupportedClassVersionError

• VerifyError

• VirtualMachineError

