CSE 331

Exceptions and Error-Handling

slides created by Marty Stepp
based on materials by M. Ernst, S. Reges, D. Notkin, R. Mercer, Wikipedia

http://www.cs.washington.edu/331/

e exception: An object representing an error.

_

Exceptions

= Other languages don't have this concept;
they represent errors by returning error codes
(null, -1, false, etc.).

e Are exceptions better? What are their benefits?

e throw: To cause an exception to occur.

= What are some actions that commonly throw exceptions?

e catch: To handle an exception.

= |f an exception is thrown and no code catches it, the program's
execution will stop and an error trace will be printed.

= |f the exception is caught, the program can continue running.

/

2

Code that throws exceptions

e dividing by zero:

int x = 0;
System.out.println(l / x); // ArithmeticException

* trying to dereference a null variable:

Point p = null;
p.translate (2, -3); // NullPointerException

e trying to interpret input in the wrong way:

// NumberFormatException
int err = Integer.parselInt("hi");

e reading a non-existent file:

// FileNotFoundException
\\; Scanner 1n = new Scanner (new File("notHere.txt"));

/

3

Exception avoidance

e In many cases, the best plan is to try to avoid exceptions.

// better to check first than try/catch without check
int x;

if (x !'= 0) {
System.out.println(l / x);
}

File file = new File("notHere.txt");
if (file.exists()) {
Scanner 1in = new Scannher (file);

}

// can we avoid this one?
int err = Integer.parselnt(str);

Catching an exception

try A

statement(s);

} catch (type name) {

}

code to handle the exception

= The try code executes. If the given exception occurs, the try block
stops running; it jumps to the catch block and runs that.

try {
Scanner 1n = new Scanner (new File(filename)) ;
System.out.println(input.nextLine());

} catch (FileNotFoundException e) ({

}

System.out.println("File was not found.");

Throwing and catching

e At any time, your program has an active call stack of methods.

.) Method where “
e \When an exception is thrown, the error occurred
JVM looks up the call stack until Method call
it finds a method with a Method without an

exception handler |4—

matching catch block for it.

Method call
= |If one is found, control jumps Method with an
back to that method. exception handler |4—
= |f none is found, the program crashes. Method call
main

e Exceptions allow non-local error handling.
= A method many levels up the stack can handle a deep error.

/

6

Catch, and then what?

public vold process(String str) {
int n;
try |
n = Integer.parselnt(str);
} catch (NumberFormatException nfe) {
System.out .println("Invalid number:

J

e Possible ways to handle an exception:
= retry the operation that failed
= re-prompt the user for new input
= print a nice error message
= quit the program
= do nothing (!) (why? when?)

" + str);

Exception methods

e All exception objects have these methods:

Method

Description

public String getMessage ()

text describing the error

public String toString()

exception's type and description

getCause (), getStackTrace (), other methods
printStackTrace ()
try |

readFile () ;
} catch (IOException e)

{

System.out.println("I/0O error: " + e.getMessage());

J

Design and exceptions

e Effective Java Tip #57:
Use exceptions only for exceptional conditions.

" The author of the Integer .parseInt method got this wrong.

= Strings that are not legal as ints are common (not "exceptional").
e (What should they have done instead?)

// Can we avoid this one? Not really. :—(

int n;

try {
n = Integer.parselnt(str);

} catch (NumberFormatException nfe) {
n = —-1;

}

Ignoring exceptions

e Effective Java Tip #65: Don't ignore exceptions.
= An empty catch block is (a common) poor style.

e often done to get code to compile or hide an error

try | |
readFile(filename); LT
} catch (IOException e) {} // do nothing on error

= At a minimum, print out the exception so you know it happened.

} catch (IOException e) {
e.printStackTrace () ; // Jjust in case

}

10

Catch multiple exceptions

try A
statement(s);

} catch (typel name) {
code to handle the exception

} catch (type2 name) {
code to handle the exception

} catch (typeN name) {
code to handle the exception
}

= You can catch more than one kind of exception in the same code.
= When an exception is thrown, the matching catch block (if any) is used.
= |f multiple catch blocks match, the most specific match is chosen.

_ /

11

Exception inheritance

e All exceptions extend from a common superclass Exception

Exception
ClassNotFoundException DataFormatException IOException NoSuchMethodException RuntimeException SQLException
tlk 'y

|

FileNotFoundException

MalformedURLException SocketException

ArithmeticException

ClassCastException

ConcurrentModificationException

EmptyStackException

l

[

lllegalArgumeniException

llegalStateException

IndexOutOfBoundsException

NoSuchElementException

l

l

NullPointerException

SecurityException

UnsupportedOperationException

/

12

Some common exceptions

ArithmeticException
BufferOverflowException
ClassCastException
ClassNotFoundException
CloneNotSupportedException
ConcurrentModificationException
EmptyStackException

lllegal ArgumentException
lllegalStateException
IndexOutOfBoundsException
InterruptedException
|OException

= EOFException,
FileNotFoundException,
Interrupted|OException,
MalformedURLException, ...

= ... NotSerializableException,
SocketException, SSLException,
UnknownHostException,
ZipException

JarException
MalformedURLException
NegativeArraySizeException
NoSuchElementException
NullPointerException
ProtocolException
RuntimeException
SecurityException
UnknownElementException
UnsupportedOperationException

see also:
http://mindprod.com/jgloss/exception.html

/

13

Inheritance and exceptions

e You can catch a general exception to handle any subclass:

try |
Scanner 1input = new Scanner (new File("foo"));
System.out.println(input.nextLine());

} catch (Exception e) ({
System.out.println("File was not found.");

}

e Similarly, you can state that a method throws any exception:

public void foo () throws Exception {

= Are there any disadvantages of doing so?

_ /

14

Catching with inheritance

try A
statement(s);
} catch (FileNotFoundException fnfe) {
code to handle the file not found exception
} catch (IOException 1o0e) {
code to handle any other 1/O exception
} catch (Exception e) {
code to handle any other exception

" 3 SocketException would match the second block
" an ArithmeticException would match the third block

15

Who should catch it?

e The code that is able to handle the error properly should be the
code that catches the exception.

= Sometimes this is not the top method on the stack.

e Example:

= main - showGUI() = click() - readFile() - FileNotFoundException!
e Which method should handle the exception, and why?

" main - new PokerGame() - new Player() - loadHistory() -
Integer.parselnt() -> NumberFormatException

e Which method should handle the exception, and why?

16

Throwing an exception

throw new ExceptionType ("message") ;

e |t is common practice to throw exceptions on unexpected errors.

public void deposit (double amount) {
1f (amount < 0.0) {
throw new IllegalArgumentException();

}

balance += amount;

}

= Why throw rather than just ignoring the negative value?
e Why not return a special error code, such as -1 or false?

17

Good throwing style

e An exception can accept a String parameter for a message
describing what went wrong.

= This is the string returned by getMessage in a catch block.

public void deposit (double amount) {
1f (amount < 0.0) {
throw new IllegalArgumentException (
"negative deposit: " + amount);

}

balance += amount;

e EJ Tip #63: Include failure-capture information in detail messages.
= Tell the caller what went wrong, to help them fix the problem.

_

/

18

Commenting exceptions

e |f your method throws, always explain this in the comments.
= State the types of exceptions thrown and under what conditions.

// Places the given amount of money into this account.
// Throws an IllegalArgumentException on negative deposits.
public void deposit (double amount) {
1f (amount < 0.0) {
throw new IllegalArgumentException (
"negative deposit: " + amount);

}

balance += amount;

e EJ Tip #62: Document all exceptions thrown by each method.
= The client must know this in order to avoid or catch the exceptions.

_ /

19

Checked exceptions

e Java has two major kinds of exceptions:

= checked exceptions: Ones that MUST be handled bya try/catch
block (or throws clause) or else the program will not compile.

e Meant for serious problems that the caller ought to deal with.

» Throwable -«
° ° Exception
=" runtime exceptions: Ones that don't have to be ﬁ —
handled; if not handled, the program halts. _
e Meant for smaller errors or programmer errors. - | s,
e Subclasses of Runt imeException in the tree.

e Mistakes that could have been avoided by a test.

e Subclasses of Exception in the inheritance tree.

= check for null or 0, check if a file exists, check array's bounds, ...

20

The throws clause

public type name (parameters) throws type {

e A clause in a method header claiming it may cause an exception.

= Needed when a method may throw an uncaught checked exception.

public void processFile(String filename)
throws FileNotFoundException ({

= The above means one of two possibilities:
sprocessFile itself might throw an exception.
sprocessFile might call some sub-method that throws an exception,

and it is choosing not to catch it (rather, to re-throw it out to the caller).

21

Writing an exception class

e EJ Tip #61: Throw exceptions appropriate to the abstraction.

= When no provided exception class is quite right for your app's kind of
error, you should write your own Except ion subclass.

// Thrown when the user tries to play after the game is over.
public class GameOverException extends RuntimeException
private String winner;

public GameOverException(String message, String winner) {
super (message) ;
this.winner = winner;

}

public String getWinner () {
return winner;
}
}

// in Game class...
1f (!inProgress()) {
\\; throw new GameOverException ("Game already ended", winner)i//

22

Checked exceptions suck!

e EJ Tip #59: Avoid unnecessary use of checked exceptions.

= Checked exceptions are (arguably) a wart in the Java language.
= |t should be the client's decision whether or not to catch exceptions.

= When writing your own exception classes, extend
RuntimeException so thatit doesn't need to be caught unless the

client wants to do so.
e Some cases still require throwing checked exceptions (e.g. file 1/0)

public void play () throws Exception ({ // no
public void play () throws RuntimeException { // better
public void play () throws MP3Exception ({ // best
public class MP3Exception extends RuntimeException { ... }

23

Problem: redundant code

public void process (OutputStream out) {
try f
// read from out; might throw

out.close () ;
} catch (IOException e) {
out.close();
System.out.println("Caught IOException: "
+ e.getMessage());

®= The close code appears redundantly in both places.

= Can't move it out below the try/catch block because close itself

could throw an TOException.

/

24

_

The finally block

try {
statement(s);
} catch (type name) {
code to handle the exception
} finally {
code to run after the try or catch finishes

}

= finally is often used for common "clean-up" code.

try {
// ... read from out; might throw
} catch (IOException e) {
System.out.println("Caught IOException: "
+ e.getMessage());
} finally {
out.close();

}

e The catch block is optional; try/finally is also legal.

25

Exceptions and errors

e There are also Errors, which represent serious Java problems.
" Error and Exception have common superclass Throwable.

= You can catch an Error (but you probably shouldn't)

Throwable
ﬁlh
| |
Exception Error
AssertionError IOError LinkageError ThreadDeath VirtualMachineError
InternalError QutOfMemoryError StackOverflowError

26

Common errors

AbstractMethodError
AWTError
ClassFormatError
ExceptioninlnitializerError
lllegalAccessError
InstantiationError
InternalError
LinkageError
NoClassDefFoundError
NoSuchFieldError

NoSuchMethodError
OutOfMemoryError
ServerError
StackOverflowError
UnknownError
UnsatisfiedLinkError
UnsupportedClassVersionError
VerifyError
VirtualMachineError

27

