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e exception: An object representing an error.

\_

Exceptions

= Other languages don't have this concept;
they represent errors by returning error codes
(null, -1, false, etc.).

e Are exceptions better? What are their benefits?

e throw: To cause an exception to occur.

= What are some actions that commonly throw exceptions?

e catch: To handle an exception.

= |f an exception is thrown and no code catches it, the program's
execution will stop and an error trace will be printed.

= |f the exception is caught, the program can continue running.
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Code that throws exceptions

e dividing by zero:

int x = 0;
System.out.println(l / x); // ArithmeticException

* trying to dereference a null variable:

Point p = null;
p.translate (2, -3); // NullPointerException

e trying to interpret input in the wrong way:

// NumberFormatException
int err = Integer.parselInt("hi");

e reading a non-existent file:

// FileNotFoundException
\\; Scanner 1n = new Scanner (new File("notHere.txt"));
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Exception avoidance

e In many cases, the best plan is to try to avoid exceptions.

// better to check first than try/catch without check
int x;

if (x !'= 0) {
System.out.println(l / x);
}

File file = new File("notHere.txt");
if (file.exists()) {
Scanner 1in = new Scannher (file);

}

// can we avoid this one?
int err = Integer.parselnt(str);




Catching an exception

try A

statement(s);

} catch (type name) {

}

code to handle the exception

= The try code executes. If the given exception occurs, the try block
stops running; it jumps to the catch block and runs that.

try {
Scanner 1n = new Scanner (new File(filename)) ;
System.out.println(input.nextLine());

} catch (FileNotFoundException e) ({

}

System.out.println("File was not found.");




Throwing and catching

e At any time, your program has an active call stack of methods.

. ) Method where “
e \When an exception is thrown, the error occurred
JVM looks up the call stack until Method call
it finds a method with a Method without an

exception handler |4—

matching catch block for it.

Method call
= |If one is found, control jumps Method with an
back to that method. exception handler |4—
= |f none is found, the program crashes. Method call
main

e Exceptions allow non-local error handling.
= A method many levels up the stack can handle a deep error.

/
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Catch, and then what?

public vold process(String str) {
int n;
try |
n = Integer.parselnt(str);
} catch (NumberFormatException nfe) {
System.out .println("Invalid number:

J

e Possible ways to handle an exception:
= retry the operation that failed
= re-prompt the user for new input
= print a nice error message
= quit the program
= do nothing (!) (why? when?)

" + str);




Exception methods

e All exception objects have these methods:

Method

Description

public String getMessage ()

text describing the error

public String toString()

exception's type and description

getCause (), getStackTrace (), other methods
printStackTrace ()
try |

readFile () ;
} catch (IOException e)

{

System.out.println("I/0O error: " + e.getMessage());

J




Design and exceptions

e Effective Java Tip #57:
Use exceptions only for exceptional conditions.

" The author of the Integer .parseInt method got this wrong.

= Strings that are not legal as ints are common (not "exceptional").
e (What should they have done instead?)

// Can we avoid this one? Not really. :—(

int n;

try {
n = Integer.parselnt(str);

} catch (NumberFormatException nfe) {
n = —-1;

}




Ignoring exceptions

e Effective Java Tip #65: Don't ignore exceptions.
= An empty catch block is (a common) poor style.

e often done to get code to compile or hide an error

try | |
readFile(filename); LT
} catch (IOException e) {} // do nothing on error

= At a minimum, print out the exception so you know it happened.

} catch (IOException e) {
e.printStackTrace () ; // Jjust in case

}
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Catch multiple exceptions

try A
statement(s);

} catch (typel name) {
code to handle the exception

} catch (type2 name) {
code to handle the exception

} catch (typeN name) {
code to handle the exception
}

= You can catch more than one kind of exception in the same code.
= When an exception is thrown, the matching catch block (if any) is used.
= |f multiple catch blocks match, the most specific match is chosen.
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Exception inheritance

e All exceptions extend from a common superclass Exception

Exception
ClassNotFoundException DataFormatException IOException NoSuchMethodException RuntimeException SQLException
tlk 'y

|

FileNotFoundException

MalformedURLException SocketException

ArithmeticException

ClassCastException

ConcurrentModificationException

EmptyStackException

l

[

lllegalArgumeniException

llegalStateException

IndexOutOfBoundsException

NoSuchElementException

l

l

NullPointerException

SecurityException

UnsupportedOperationException

/
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Some common exceptions

ArithmeticException
BufferOverflowException
ClassCastException
ClassNotFoundException
CloneNotSupportedException
ConcurrentModificationException
EmptyStackException

lllegal ArgumentException
lllegalStateException
IndexOutOfBoundsException
InterruptedException
|OException

= EOFException,
FileNotFoundException,
Interrupted|OException,
MalformedURLException, ...

= ... NotSerializableException,
SocketException, SSLException,
UnknownHostException,
ZipException

JarException
MalformedURLException
NegativeArraySizeException
NoSuchElementException
NullPointerException
ProtocolException
RuntimeException
SecurityException
UnknownElementException
UnsupportedOperationException

see also:
http://mindprod.com/jgloss/exception.html

/
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Inheritance and exceptions

e You can catch a general exception to handle any subclass:

try |
Scanner 1input = new Scanner (new File("foo"));
System.out.println(input.nextLine());

} catch (Exception e) ({
System.out.println("File was not found.");

}

e Similarly, you can state that a method throws any exception:

public void foo () throws Exception {

= Are there any disadvantages of doing so?

\_ /
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Catching with inheritance

try A
statement(s);
} catch (FileNotFoundException fnfe) {
code to handle the file not found exception
} catch (IOException 1o0e) {
code to handle any other 1/O exception
} catch (Exception e) {
code to handle any other exception

" 3 SocketException would match the second block
" an ArithmeticException would match the third block
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Who should catch it?

e The code that is able to handle the error properly should be the
code that catches the exception.

= Sometimes this is not the top method on the stack.

e Example:

= main - showGUI() = click() - readFile() - FileNotFoundException!
e Which method should handle the exception, and why?

" main - new PokerGame() - new Player() - loadHistory() -
Integer.parselnt() -> NumberFormatException

e Which method should handle the exception, and why?
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Throwing an exception

throw new ExceptionType ("message") ;

e |t is common practice to throw exceptions on unexpected errors.

public void deposit (double amount) {
1f (amount < 0.0) {
throw new IllegalArgumentException();

}

balance += amount;

}

= Why throw rather than just ignoring the negative value?
e Why not return a special error code, such as -1 or false?
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Good throwing style

e An exception can accept a String parameter for a message
describing what went wrong.

= This is the string returned by getMessage in a catch block.

public void deposit (double amount) {
1f (amount < 0.0) {
throw new IllegalArgumentException (
"negative deposit: " + amount);

}

balance += amount;

e EJ Tip #63: Include failure-capture information in detail messages.
= Tell the caller what went wrong, to help them fix the problem.

\_
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Commenting exceptions

e |f your method throws, always explain this in the comments.
= State the types of exceptions thrown and under what conditions.

// Places the given amount of money into this account.
// Throws an IllegalArgumentException on negative deposits.
public void deposit (double amount) {
1f (amount < 0.0) {
throw new IllegalArgumentException (
"negative deposit: " + amount);

}

balance += amount;

e EJ Tip #62: Document all exceptions thrown by each method.
= The client must know this in order to avoid or catch the exceptions.

\_ /
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Checked exceptions

e Java has two major kinds of exceptions:

= checked exceptions: Ones that MUST be handled bya try/catch
block (or throws clause) or else the program will not compile.

e Meant for serious problems that the caller ought to deal with.

» Throwable -«
° ° Exception
=" runtime exceptions: Ones that don't have to be ﬁ —
handled; if not handled, the program halts. _
e Meant for smaller errors or programmer errors. - | s,
e Subclasses of Runt imeException in the tree.

e Mistakes that could have been avoided by a test.

e Subclasses of Exception in the inheritance tree.

= check for null or 0, check if a file exists, check array's bounds, ...
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The throws clause

public type name (parameters) throws type {

e A clause in a method header claiming it may cause an exception.

= Needed when a method may throw an uncaught checked exception.

public void processFile(String filename)
throws FileNotFoundException ({

= The above means one of two possibilities:
sprocessFile itself might throw an exception.
sprocessFile might call some sub-method that throws an exception,

and it is choosing not to catch it (rather, to re-throw it out to the caller).
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Writing an exception class

e EJ Tip #61: Throw exceptions appropriate to the abstraction.

= When no provided exception class is quite right for your app's kind of
error, you should write your own Except ion subclass.

// Thrown when the user tries to play after the game is over.
public class GameOverException extends RuntimeException
private String winner;

public GameOverException(String message, String winner) {
super (message) ;
this.winner = winner;

}

public String getWinner () {
return winner;
}
}

// in Game class...
1f (!inProgress()) {
\\; throw new GameOverException ("Game already ended", winner)i//
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Checked exceptions suck!

e EJ Tip #59: Avoid unnecessary use of checked exceptions.

= Checked exceptions are (arguably) a wart in the Java language.
= |t should be the client's decision whether or not to catch exceptions.

= When writing your own exception classes, extend
RuntimeException so thatit doesn't need to be caught unless the

client wants to do so.
e Some cases still require throwing checked exceptions (e.g. file 1/0)

public void play () throws Exception ({ // no
public void play () throws RuntimeException { // better
public void play () throws MP3Exception ({ // best
public class MP3Exception extends RuntimeException { ... }
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Problem: redundant code

public void process (OutputStream out) {
try f
// read from out; might throw

out.close () ;
} catch (IOException e) {
out.close();
System.out.println("Caught IOException: "
+ e.getMessage());

®= The close code appears redundantly in both places.

= Can't move it out below the try/catch block because close itself

could throw an TOException.

/
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The finally block

try {
statement(s);
} catch (type name) {
code to handle the exception
} finally {
code to run after the try or catch finishes

}

= finally is often used for common "clean-up" code.

try {
// ... read from out; might throw
} catch (IOException e) {
System.out.println("Caught IOException: "
+ e.getMessage());
} finally {
out.close();

}

e The catch block is optional; try/finally is also legal.
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Exceptions and errors

e There are also Errors, which represent serious Java problems.
" Error and Exception have common superclass Throwable.

= You can catch an Error (but you probably shouldn't)

Throwable
ﬁlh
| |
Exception Error
AssertionError IOError LinkageError ThreadDeath VirtualMachineError
InternalError QutOfMemoryError StackOverflowError
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Common errors

AbstractMethodError
AWTError
ClassFormatError
ExceptioninlnitializerError
lllegalAccessError
InstantiationError
InternalError
LinkageError
NoClassDefFoundError
NoSuchFieldError

NoSuchMethodError
OutOfMemoryError
ServerError
StackOverflowError
UnknownError
UnsatisfiedLinkError
UnsupportedClassVersionError
VerifyError
VirtualMachineError
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