
1

CSE 331

Enumerated types (enum)

slides created by Marty Stepp

based on materials by M. Ernst, S. Reges, D. Notkin, R. Mercer, Wikipedia

http://www.cs.washington.edu/331/

2

Anti-pattern: int constants
public class Card {

public static final int CLUBS = 0;

public static final int DIAMONDS = 1;

public static final int HEARTS = 2;

public static final int SPADES = 3;

...

private int suit;

...

public void setSuit(int suit) {

this.suit = suit;

}

}

• What's wrong with using int constants to represent card suits?

� variation (also bad): using Strings for the same purpose.

3

Enumerated types
• enum: A type of objects with a fixed set of constant values.

public enum Name {

VALUE, VALUE, ..., VALUE

}

• Usually placed into its own .java file.

• C has enums that are really ints; Java's are objects.

public enum Suit {

CLUBS, DIAMONDS, HEARTS, SPADES

}

• Effective Java Tip #30: Use enums instead of int constants.

"The advantages of enum types over int constants are compelling.

Enums are far more readable, safer, and more powerful."

4

What is an enum?
• The preceding enum is roughly equal to the following short class:

public final class Suit extends Enum<Suit> {

public static final Suit CLUBS = new Suit();

public static final Suit DIAMONDS = new Suit();

public static final Suit HEARTS = new Suit();

public static final Suit SPADES = new Suit();

private Suit() {} // no more can be made

}

5

What can you do with an enum?

• use it as the type of a variable, field, parameter, or return

public class Card {

private Suit suit;

...

}

• compare them with == (why don't we need to use equals?)

if (suit == Suit.CLUBS) { ...

• compare them with compareTo (by order of declaration)

public int compareTo(Card other) {

if (suit != other.suit) {

return suit.compareTo(other.suit);

} ...

}

6

The switch statement
switch (boolean test) {

case value:

code;
break;

case value:

code;
break;

...
default: // if it isn't one of the above values

code;
break;

}

• an alternative to the if/else statement

� must be used on integral types (e.g. int, char, long, enum)

� instead of a break, a case can end with a return, or if neither is

present, it will "fall through" into the code for the next case

7

Enum methods

returns an enum's 0-based number by order

of declaration (first is 0, then 1, then 2, ...)

int ordinal()

equivalent to toStringString name()

not needed; can just use ==boolean equals(o)

all enum types are Comparable by order of

declaration

int compareTo(E)

descriptionmethod

an array of all values of your enumerationstatic E[] values()

converts a string into an enum valuestatic E valueOf(s)

descriptionmethod

8

EnumSet

• class EnumSet from java.util represents a set of enum values

and has useful methods for manipulating enums:

Set<Coin> coins = EnumSet.range(Coin.NICKEL, Coin.QUARTER);

for (coin c : coins) {

System.out.println(c); // see also: EnumMap

}

� Effective Java Tip #32: Use EnumSet instead of bit fields.
� Effective Java Tip #33: Use EnumMap instead of ordinal indexing.

a set of all enum values other

than the ones in the given set

static EnumSet<E> complementOf(set)

a set holding the given valuesstatic EnumSet<E> of(...)

an empty set of the given typestatic EnumSet<E> noneOf(Type)

set of all enum values declared

between from and to

static EnumSet<E> range(from, to)

a set of all values of the typestatic EnumSet<E> allOf(Type)

9

More complex enums

• An enumerated type can have fields, methods, and constructors:

public enum Coin {

PENNY(1), NICKEL(5), DIME(10), QUARTER(25);

private int cents;

private Coin(int cents) {

this.cents = cents;

}

public int getCents() { return cents; }

public int perDollar() { return 100 / cents; }

public String toString() { // "NICKEL (5c)"

return super.toString() + " (" + cents + "c)";

}

}

