
1

CSE 331

Cloning objects

slides created by Marty Stepp

based on materials by M. Ernst, S. Reges, D. Notkin, R. Mercer, Wikipedia

http://www.cs.washington.edu/331/

2

Copying objects

• In other languages (common in C++), to enable clients to easily

make copies of an object, you can supply a copy constructor :

// in client code

Point p1 = new Point(-3, 5);

Point p2 = new Point(p1); // make p2 a copy of p1

// in Point.java

public Point(Point blueprint) { // copy constructor

this.x = blueprint.x;

this.y = blueprint.y;

}

� Java has some copy constructors but also has a different way...

3

Object clone method

protected Object clone()

throws CloneNotSupportedException

� Creates and returns a copy of this object. General intent:

• x.clone() != x

• x.clone().equals(x)

• x.clone().getClass() == x.getClass()

� (though none of the above are absolute requirements)

� The Object class's clone method makes a "shallow copy" of the

object, but by convention, the object returned by this method should

be independent of this object (which is being cloned).

4

Protected access

protected Object clone()

throws CloneNotSupportedException

• protected: Visible only to the class itself, its subclasses, and any

other classes in the same package.

� In other words, for most classes you are not allowed to call clone .

� If you want to enable cloning, you must override clone .

• You should make it public so clients can call it.

• You can also change the return type to your class's type. (good)

• You can also not throw the exception. (good)

� You must also make your class implement the Cloneable interface

to signify that it is allowed to be cloned.

5

The Cloneable interface

public interface Cloneable {}

• Why would there ever be an interface with no methods?

� Another example: Set interface, a sub-interface of Collection

• tagging interface: One that does not contain/add any methods, but

is meant to mark a class as having a certain quality or ability.

� Generally a wart in the Java language; a misuse of interfaces.

� Now largely unnecessary thanks to annotations (seen later).

� But we still must interact with a few tagging interfaces, like this one.

• Let's implement clone for a Point class...

6

Flawed clone method 1
public class Point implements Cloneable {

private int x, y;

...

public Point clone() {

Point copy = new Point(this.x, this.y);

return copy;

}

}

• What's wrong with the above method?

7

The flaw
// also implements Cloneable and inherits clone()

public class Point3D extends Point {

private int z;

...

}

• The above Point3D class's clone method produces a Point!

� This is undesirable and unexpected behavior.

� The only way to ensure that the clone will have exactly the same type

as the original object (even in the presence of inheritance) is to call the

clone method from class Object with super.clone() .

8

Proper clone method
public class Point implements Cloneable {

private int x, y;

...

public Point clone() {

try {

Point copy = (Point) super.clone();

return copy;

} catch (CloneNotSupportedException e) {

// this will never happen

return null;

}

}

}

� To call Object's clone method, you must use try/catch.

• But if you implement Cloneable, the exception will not be thrown.

9

Flawed clone method 2
public class BankAccount implements Cloneable {

private String name;

private List<String> transactions;

...

public BankAccount clone() {

try {

BankAccount copy = (BankAccount) super.clone();

return copy;

} catch (CloneNotSupportedException e) {

return null; // won't ever happen

}

}

}

• What's wrong with the above method?

10

Shallow vs. deep copy

• shallow copy: Duplicates an object without duplicating any other

objects to which it refers.

• deep copy: Duplicates an object's entire reference graph: copies

itself and deep copies any other objects to which it refers.

� Object's clone method makes a shallow copy by default. (Why?)

original

int x = [42]
double y = [3.14]

Scanner in = []
List data = []

ArrayList object

Scanner object

clone

int x = [42]
double y = [3.14]

Scanner in = []
List data = []

original
int x = [42]

double y = [3.14]

Scanner in = []
List data = []

ArrayList object

Scanner object

clone
int x = [42]

double y = [3.14]

Scanner in = []
List data = []

ArrayList object

Scanner object

11

Proper clone method 2
public class BankAccount implements Cloneable {

private String name;

private List<String> transactions;

...

public BankAccount clone() {

try { // deep copy

BankAccount copy = (BankAccount) super.clone();

copy.transactions = new ArrayList<String>(transactions);

return copy;

} catch (CloneNotSupportedException e) {

return null; // won't ever happen

}

}

}

� Copying the list of transactions (and any other modifiable reference

fields) produces a deep copy that is independent of the original.

12

Effective Java Tip #11

• Tip #11: Override clone judiciously.

• Cloning has many gotchas and warts:

� protected vs. public

� flaws in the presence of inheritance

� requires the use of an ugly tagging interface

� throws an ugly checked exception

� easy to get wrong by making a shallow copy instead of a deep copy

