
1

CSE 331

The Object class;

Object equality and the equals method

slides created by Marty Stepp

based on materials by M. Ernst, S. Reges, D. Notkin, R. Mercer, Wikipedia

http://www.cs.washington.edu/331/

2

The class Object

• The class Object forms the root of the

overall inheritance tree of all Java classes.

� Every class is implicitly a subclass of Object

• The Object class defines several methods

that become part of every class you write.

For example:

� public String toString()

Returns a text representation of the object,

usually so that it can be printed.

3

Object methods

� What does this list of methods tell you about Java's design?

text representation of the objectpublic String toString()

methods related to concurrency

and locking (seen later)

public void notify()

public void notifyAll()

public void wait()

public void wait(...)

a code suitable for putting this

object into a hash collection

public int hashCode()

info about the object's typepublic Class<?> getClass()

called during garbage collectionprotected void finalize()

returns whether two objects have

the same state

public boolean equals(Object o)

creates a copy of the objectprotected Object clone()

descriptionmethod

4

Common properties of objects

• When Sun designed Java, they felt that every object (including

arrays) should be able to:

� be compared to other objects (equals)

� be printed on the console or converted into a string (toString)

� ask questions at runtime about what type/class it is (getClass)

� be created (constructors), copied (clone), and destroyed (finalize)

� be used in hash-based collections (hashCode)

� perform multi-threaded synchronization and locking (notify/wait)

• This powerful and broad set of capabilities helped Java's adoption as

an object-oriented language.

5

Using the Object class

• You can store any object in a variable of type Object.

Object o1 = new Point(5, -3);

Object o2 = "hello there";

• You can write methods that accept an Object parameter.

public void example(Object o) {

if (o != null) {

System.out.println("o is " + o.toString());

}

• You can make arrays or collections of Objects.

Object[] a = new Object[5];

a[0] = "hello";

a[1] = new Random();

List<Object> list = new ArrayList<Object>();

6

Recall: comparing objects

• The == operator does not work well with objects.

== tests for referential equality, not state-based equality.

It produces true only when you compare an object to itself.

Point p1 = new Point(5, 3);

Point p2 = new Point(5, 3);

Point p3 = p2;

// p1 == p2 is false;

// p1 == p3 is false;

// p2 == p3 is true

// p1.equals(p2)?

// p2.equals(p3)?

...

x 5 y 3
p1

p2

...

x 5 y 3

p3

7

Default equals method

• The Object class's equals implementation is very simple:

public class Object {

...

public boolean equals(Object o) {

return this == o;

}

}

• However:

� When we have used equals with various kinds of objects, it didn't

behave like == . Why not?

� The Java API documentation for equals is elaborate. Why?

8

Overriding equals

• The Object class is designed for inheritance.

� Its description and specification will apply to all other Java classes.

• So, its specification must be flexible enough to apply to all classes.

� Subclasses will override equals to test for equality in their own way.

� The Object equals spec enumerates basic properties that clients can

rely on that method to have in all subtypes of Object.

• (this == o) is compatible with these properties, but so are other tests.

9

Flawed equals method 1
public boolean equals(Point other) { // bad

if (x == other.x && y == other.y) {

return true;

} else {

return false;

}

}

• Let's write an equals method for a Point class.

� The method should compare the state of the two objects and return

true if they have the same x/y position.

� What's wrong with the above implementation?

10

Flaws in the method

• The body can be shortened to the following (boolean zen):

return x == other.x && y == other.y;

• The parameter to equals must be of type Object, not Point.

� It should be legal to compare a Point to any other object:

// this should be allowed

Point p = new Point(7, 2);

if (p.equals("hello")) { // false

...

� equals should always return false if a non-Point is passed.

� By writing ours to accept a Point, we have overloaded equals.

• Point has two equals methods: One takes an Object, one takes a Point.

11

Flawed equals method 2
public boolean equals(Object o) { // bad

return x == o.x && y == o.y;

}

• What's wrong with the above implementation?

� It does not compile:

Point.java:36: cannot find symbol

symbol : variable x

location: class java.lang.Object

return x == o.x && y == o.y;

^

� The compiler is saying,

"o could be any object. Not every object has an x field."

12

Object variables

• You can store any object in a variable of type Object.

Object o1 = new Point(5, -3);

Object o2 = "hello there";

Object o3 = new Scanner(System.in);

• An Object variable only knows how to do general things.

String s = o1.toString(); // ok

int len = o2.length(); // error

String line = o3.nextLine(); // error

� (The objects referred to by o1, o2, and o3 still do have those

methods. They just can't be called through those variables because

the compiler isn't sure what kind of object the variable refers to.)

13

Casting references
Object o1 = new Point(5, -3);

Object o2 = "hello there";

((Point) o1).translate(6, 2); // ok

int len = ((String) o2).length(); // ok

Point p = (Point) o1;

int x = p.getX(); // ok

• Casting references is different than casting primitives.

� Doesn't actually change the object that is referred to.

� Tells the compiler to assume that o1 refers to a Point object.

• Watch out for precedence mistakes:
int len = (String) o2.length(); // error

14

Flawed equals method 3
public boolean equals(Object o) {

Point other = (Point) o;

return x == other.x && y == other.y;

}

• What's wrong with the above implementation?

� It compiles and works when other Point objects are passed, but it

throws an exception when a non-Point is passed (see next slide).

15

Comparing different types
Point p = new Point(7, 2);

if (p.equals("hello")) { // should be false

...

}

� Currently our method crashes on the above code:

Exception in thread "main"

java.lang.ClassCastException: java.lang.String

at Point.equals(Point.java:25)

at PointMain.main(PointMain.java:25)

� The problem is the cast (cannot cast sideways in an inheritance tree):

public boolean equals(Object o) {

Point other = (Point) o;

16

The instanceof keyword

reference instanceof type

if (variable instanceof type) {

statement(s);

}

• A binary, infix, boolean operator.

• Tests whether variable refers

to an object of class type

(or any subclass of type).

String s = "hello";

Point p = new Point();
falsenull instanceof Object

falsep instanceof String

truep instanceof Object

falsenull instanceof String

trues instanceof Object

truep instanceof Point

trues instanceof String

falses instanceof Point

resultexpression

17

Flawed equals method 4
// Returns true if o refers to a Point object

// with the same (x, y) coordinates as

// this Point; otherwise returns false.

public boolean equals(Object o) {

if (o instanceof Point) {

Point other = (Point) o;

return x == other.x && y == other.y;

} else {

return false;

}

}

• What's wrong with the above implementation?

� It behaves incorrectly if the Point class is extended (see next slides).

18

Subclassing and equals
public class Point3D extends Point {

private int z;

public Point3D(int x, int y, int z) { ... }

...

}

Point3D p1 = new Point3D(4, 5, 0);

Point3D p2 = new Point3D(4, 5, 6);

Point p3 = new Point (4, 5);

• All objects above will report that they are "equal" to each other.

� But they shouldn't be. The objects don't have equal state.

� In some cases, they aren't even the same type.

19

Flawed equals method 5
public class Point3D extends Point {

...

public boolean equals(Object o) {

if (o instanceof Point3D) {

Point3D other = (Point3D) o;

return super.equals(o)

&& z == other.z;

} else {

return false;

}

}

}

• What's wrong with the above implementation?

� It produces asymmetric results when Point and Point3D are mixed.

20

A proper equals method

• Equality is reflexive:

� a.equals(a) is true for every object a

• Equality is symmetric:

� a.equals(b) ↔ b.equals(a)

• Equality is transitive:

� (a.equals(b) && b.equals(c)) ↔ a.equals(c)

• No non-null object is equal to null:

� a.equals(null) is false for every object a

• Effective Java Tip #8:

Obey the general contract when overriding equals.

21

The getClass method

•getClass returns information about the type of an object.

� Commonly used for reflection (seen later).

� Uses run-time type information, not the type of the variable.

� Stricter than instanceof ; subclasses return different results.

•getClass should be used when implementing equals.

� Instead of instanceof to check for same type, use getClass.

� This will eliminate subclasses from being considered for equality.

� Caution: Must check for null before calling getClass .

22

Correct equals methods
public boolean equals(Object o) { // Point

if (o != null && getClass() == o.getClass()) {

Point other = (Point) o;

return x == other.x && y == other.y;

} else {

return false;

}

}

public boolean equals(Object o) { // Point3D

if (o != null && getClass() == o.getClass()) {

Point3D other = (Point3D) o;

return super.equals(o) && z == other.z;

} else {

return false;

}

}

23

Equality and time

• If two objects are equal now, will they always be equal?

� In mathematics, the answer is "yes".

� In Java, the answer is "you choose".

� The Object contract doesn't specify this (why not?)

• For mutable objects, equality may change if objects change.

• For immutable objects (ones with no "setter" mutator methods):

� The object's state never changes.

� Equality is automatically forever.

24

Equality and time example

• The following objects start out equal but are later unequal:

Date d1 = new Date(0); // Jan 1 1970 00:00:00 GMT

Date d2 = new Date(0);

System.out.println(d1.equals(d2)); // true

d2.setTime(1); // 1 millisecond later

System.out.println(d1.equals(d2)); // false

25

Kinds of equivalence

• Two objects are behaviorally equivalent if:

� There is no sequence of operations that can distinguish them.

� This is "eternal" equality.

� Two Strings with same content are behaviorally equivalent, two Dates

with same content are not.

• Two objects are observationally equivalent if:

� There is no sequence of operations that can distinguish them without

using == or calling mutator methods on the object(s).

� Two Strings or Dates with same content are observationally equivalent.

26

Equality and collections
Set<String> set1 = new HashSet<String>();

Set<String> set2 = new TreeSet<String>();

for (String s : "hi how are you".split(" ")) {

set1.add(s); set2.add(s);

}

System.out.println(set1.equals(set2)); // true

• Objects of different types are usually not equals to each other.

• But the documentation for the Set interface specifies:

� Returns true if the specified object is also a set, the two sets have the

same size, and every member of the specified set is contained in this

set (or equivalently, every member of this set is contained in the

specified set). This definition ensures that the equals method works

properly across different implementations of the set interface.

