
1

CSE 331

Review: Classes, Inheritance, and Collections

slides created by Marty Stepp

based on materials by M. Ernst, S. Reges, D. Notkin, R. Mercer, Wikipedia

http://www.cs.washington.edu/331/

2

Recall: A typical Java class
public class Point {

private int x; // fields

private int y;

public Point(int x, int y) { // constructor

this.x = x;

this.y = y;

}

public int getX() { return x; } // accessor

public int getY() { return y; }

public void translate(int dx, int dy) {

x += dx;

y += dy; // mutator

}

public String toString() { // for printing

return "(" + x + ", " + y + ")";

}

}

3

Effective Java Tip #10

• Throughout this course, we will refer to design heuristics from

Joshua Bloch's excellent Effective Java (2nd edition) book.

• Tip #10: Always override toString.

• Why?

� If you can print your objects, you can easily see their state.

� Clients can print your objects, which is a very common thing to do.

� Clients can put them into collections and print the collection.

� Nobody likes to see the default "ClassName@a97e2f" output.

� Helps with debugging your own code as you're writing it.

4

Multiple constructors
public class Point {

private int x;

private int y;

public Point() {

this(0, 0);

}

public Point(int x, int y) {

this.x = x;

this.y = y;

}

...

}

• Avoids redundancy between constructors

• Only a constructor (not a method) can call another constructor

5

Class question

• We are given a class BankAccount where each object represents

a user's bank data such as name and balance.

• We must add functionality to the class so that each account object is

automatically given a new unique ID number as it is created.

� First account = ID 1; second account = ID 2; etc.

• How do we do it?

6

Static fields
private static type name;

or,

private static type name = value;

� Example:

private static int theAnswer = 42;

• static: Shared by all instances (objects) of a class.

� A shared global field that all objects of the class can access/modify.

� Like a class constant, except that its value can be changed.

7

BankAccount solution
public class BankAccount {

// static count of how many accounts are created

// (only one count shared for the whole class)

private static int objectCount = 0;

private String name; // fields (replicated

private int id; // for each object)

public BankAccount() {

objectCount++; // advance the id, and

id = objectCount; // give number to account

}

...

public int getID() { // return this account's id

return id;

}

}

� What would happen if objectCount were non-static? If id were static?

8

Recall: Inheritance

• inheritance: Forming new classes based on existing ones.

� a way to share/reuse code between two or more classes

� introduces polymorphism (can treat the classes the same way)

� superclass: Parent class being extended.

� subclass: Child class that inherits behavior from superclass.

� is-a relationship: Each object of the subclass also "is a(n)" object of the

superclass and can be treated as one.

9

A typical subclass
public class CheckingAccount extends BankAccount {

private double fee; // adding new state

public CheckingAccount(String name, double fee) {

super(name); // call superclass c'tor

this.fee = fee;

}

// adding new behavior

public double getFee() {

return fee;

}

// overriding existing behavior

public void withdraw(double amount) {

super.withdraw(amount + fee);

}

}
• Question: Why not just add optional fee behavior to BankAccount?

10

Effective Java Tip #20

• Tip #20: Prefer class hierarchies to "tagged" classes.

• What's a "tagged" class, and why is it bad?

� If we add the fee code to BankAccount, each object will need some

kind of field to "tag" or flag whether it uses fees or not.

� Adding that code complicates the existing class.

• The new behavior will add ifs and logic to otherwise simple code.

� BankAccount already works; why risk breaking it?

� inheritance = additive rather than invasive change

• The fee / no-fee logic will be decided entirely by the object type used.

11

Polymorphism

• polymorphism: Quality where the same code can be used with

different kinds of objects and will behave in different ways.

• We can store a subclass object in a superclass variable.

BankAccount acct = new CheckingAccount("Bob", 1.50);

• We can pass a subclass object as a superclass parameter.

doStuff(acct);

...

public static void doStuff(BankAccount ba) {

• The object we pass will always behave the same way ("its" way).

� If doStuff calls withdraw on acct, the version from

CheckingAccount is used.

12

Recall: Interfaces

• interface: A list of methods that a class can promise to implement.

� Gives an is-a relationship and polymorphism without code sharing.

• Consider shape classes Circle, Rectangle, and Triangle.

• Some things are common to all shapes but computed differently:

� perimeter: distance around the outside of the shape

� area: amount of 2D space occupied by the shape

13

Interface syntax
public interface name {

public type name(type name, ..., type name);
public type name(type name, ..., type name);
...
public type name(type name, ..., type name);

}

Example:
public interface Shape {

public double area();

public double perimeter();

}

14

Implementing an interface
public class name implements interface {

...

� Example:

public class Rectangle implements Shape {

...

public double area() { ... }

public double perimeter() { ... }

}

• A class can declare that it "implements" an interface.

� The class promises to implement each method in that interface.

(Otherwise it will fail to compile.)

15

Collections as fields

• Many objects must store a collection of structured data.

� Many data structures to choose from:

• array, list, set, map, stack, queue, ...

� Most kinds of collections have multiple implementations:

•List: ArrayList, LinkedList

•Set: HashSet, TreeSet, LinkedHashSet

•Map: HashMap, TreeMap, LinkedHashMap

� Which structure is best to use depends on the situation:

• Does the data need to be in a particular order?

• Are duplicates allowed?

• Do we need to store pairs or look things up by partial values ("keys")?

• How will we access the data (randomly, in order, etc.)?

• ...

16

Collections summary

uses extra memoryvery fast; O(1)order of insertionLinkedHashMap

unorderedvery fast; O(1)unpredictableHashMap

elements must be

comparable

sorted; O(log N)sorted orderTreeMap

uses extra memoryvery fast; O(1)order of insertionLinkedHashSet

unorderedvery fast; O(1)unpredictableHashSet

elements must be

comparable

sorted; O(log N)sorted orderTreeSet

poor random accessfast to modify at

both ends

by insertion, by indexLinkedList

slow to modify in

middle/front

random access; fast

to modify at end

by insertion, by indexArrayList

little functionality;

cannot resize

fast; simpleby indexarray

weaknessesbenefitsorderingcollection

17

Effective Java Tip #25

• Tip #25: Prefer lists to arrays.

• In the majority of cases where you want to store structured data, a

list works much better than an array. Why?

� Lists automatically resize.

� Lists contain more useful operations such as insertion, removal,

toString, and searching (indexOf / contains).

� Lists are more type-safe than arrays in certain cases.

• Works: BankAccount[] a = new CheckingAccount[10]; // bad

• Fails: List<BankAccount> l = new ArrayList<CheckingAccount>();

18

Abstract data types (ADTs)

• abstract data type (ADT): A specification of a collection of data and

the operations that can be performed on it.

� The external view of a given type of objects.

� Describes what an object does, not how it does it.

� When you write classes, you are creating new ADTs.

• Clients of the object don't know exactly how its behavior is

implemented, and they don't need to.

� They just need to understand the idea of what the object represents

and what operations it can perform.

19

Effective Java Tip #52

• Tip #52: Item 52: Refer to objects by their interfaces.

� Bad: ArrayList<String> list = new ArrayList<String>();

� Good: List<String> list = new ArrayList<String>();

• Why?

� allows you to switch list implementations later if needed

� keeps you from relying on behavior exclusive to ArrayList

� also use the above style for declaring parameter / return types!
public static List<String> read(String file) {...

20

From spec to code

• As developers, we are often given

a spec and asked to implement it.

• The spec may tell us what classes

and public methods to write.

(Later in this course, it won't...!)

� Either way, it does not describe

in detail how to implement them.

• We must figure out what internal state (fields) and helping

behavior (methods) are necessary to implement the spec.

21

Spec-to-code question

• Let's implement a class BuddyList whose objects store all

information about a user's instant messenger buddy list.

• Required functionality:

� create a new empty buddy list for a given user name

� add new buddies to the list (an object of type Buddy)

� examine the buddies in the list, in unspecified order

� search for a buddy in the list by name

� broadcast a message to all of the buddies in the list

• Note: All methods should be as efficient as possible.

• How should the class be implemented?

� What are its methods and fields? What data structures to use?

22

Effective Java Tip #16

• Tip #16: Favor composition over inheritance.

• A BuddyList is similar to one of the existing Java collections, but with

a bit of added functionality. So why not extend HashMap, etc.?

� When you extend a class, your subclass inherits all of its behavior.

� We don't want our buddy list to have all of those various methods.

• BuddyList would now have methods like clear, retainAll, keySet, ...

• This might expose the internal buddies data in ways we don't want.

� This isn't a true "is-a" relationship. A buddy list isn't a map; it uses a

map to help implement its functionality. It "has-a" map.

• composition: Using another object as part of your state.

