CSE 331

Introduction;
Review of Java and OOP

slides created by Marty Stepp
based on materials by M. Ernst, S. Reges, D. Notkin, R. Mercer, Wikipedia

http://www.cs.washington.edu/331/

What is this course about?

e specification and documentation
e object-oriented design
= taking a problem and turning it into a set of well-designed classes
e testing, debugging, and correctness
e [earning to use existing software libraries and APIs
e using software tools and development environments (IDEs)
e working in small groups to solve programming projects

e things that are "sort of" course topics:
= Java language features
= graphical user interfaces (GUlIs)

_

Building Good Software is Hard

e |arge software systems are enormously complex

= millions of "moving parts"

e people expect software to be malleable
= software mitigates the deficiencies of other components

e we are always trying to do new things with software

= relevant experience is often missing

e software engineering is about:
= managing complexity and change
= coping with potential defects

e customers, developers, environment, software

_ /)

Managing Complexity

e abstraction and specification
= procedural, data, control flow
= why they are useful and how to use them

e writing, understanding, and reasoning about code

= the examples are in Java, but the issues are more general

e program design and documentation
= the process of design; design tools

e pragmatic considerations
= testing
= debugging and defensive programming

_ /

Prerequisite knowledge

To do well in this course, you should know (or quickly review):

= basic Java syntax (loops, if/else, variables, arrays, parameters/return)
= primitive vs. object types; value vs. reference semantics

= creating classes of objects (syntax and semantics)
* fields, encapsulation, public/private, instance methods, constructors
e client (external) vs. implementation (internal) views of an object
e static vs. non-static

= inheritance and interfaces (basic syntax and semantics)

= Java Collections Framework (List, Set, Map, Stack, Queue, PriorityQueue)
e using generics; primitive "wrapper" classes

= exceptions (throwing and catching)
= recursion

\ see Review slides on course web site, or Core Java Ch. 1-6, for review material /
5

OOP and OOD

e object-oriented programming: A programming paradigm where a
software system is represented as a collection of objects that
interact with each other to solve the overall task.

= most CSE 142 assignments are not object-oriented (why not?)

" many CSE 143 assignments are object-oriented
e but not all are well-designed (seen later)

= most software you will write after CSE 143 is object-oriented

e exceptions: functional code; systems programming; web programming

Major OO concepts

e Object-oriented programming is founded on these ideas:

= object/class: An object is an entity that combines data with behavior
that acts on that data. A class is a type or category of objects.

* information hiding (encapsulation): The ability to protect some
components of the object from external entities ("private").

= inheritance: The ability for a class ("subclass") to extend or override
functionality of another class ("superclass").

= polymorphism: The ability to replace an object with its sub-objects to
achieve different behavior from the same piece of code.

" interface: A specification of method signatures without supplying
implementations, as a mechanism for enabling polymorphism.

Object-oriented design

e object-oriented design: The process of planning a system of
interacting objects and classes to solve a software problem.

= (looking at a problem and deducing what classes will help to solve it)
= one of several styles of software design

e What are the benefits of OO design?
= How do classes and objects help improve the style of a program?
= What benefits have you received by using objects created by others?

Inputs to OO design

e OO0 design is not the start of the software development process.
First the dev team may create some or all of the following:

= requirements specification: Documents that describe the desired
implementation-independent functionality of the system as a whole.

= conceptual model: Implementation-independent diagram that
captures concepts in the problem domain.

= use cases: Descriptions of sequences of events that, taken together,
lead to a system doing something useful to achieve a specific goal.

= user interface prototype: Shows and describes the look and feel of the
product's user interface.

= data model: An abstract description of how data is represented and
used in the system (databases, files, network connections, etc.).

_ /)

9

Classic OO design exercise

e A classic type of object-oriented design question is as follows:

= Look at a description of a particular problem domain or software
system and its necessary features in high-level general terms.

= From the description, try to identify items that might be good to
represent as classes if the system were to be implemented.

= Hints:
e Classes and objects often correspond to nouns in the problem description.

= Some nouns are too trivial to represent as entire classes; maybe they
are simply data (fields) within other classes or objects.

e Behaviors of objects are often verbs in the problem description.
e Look for related classes that might make candidates for inheritance.

10

OO0 design exercise

What classes are in this Texas Hold 'Em poker system?
= 2 to 8 human or computer players
= Computer players with skill setting: easy, medium, hard
= Each player has a name and stack of chips

= Summary of each hand:

e Dealer collects ante from appropriate players, shuffles the deck, and deals
each player a hand of 2 cards from the deck.

e A betting round occurs, followed by dealing 3 shared cards from the deck.

e As shared cards are dealt, more betting rounds occur, where each player
can fold, check, or raise.

e At the end of a round, if more than one player is remaining, players' hands
are compared, and the best hand wins the pot of all chips bet.

_ /

11

OO0 design exercise

What classes are in this video store kiosk system?
* The software is for a video kiosk that replaces human clerks.

= A customer with an account can use their membership and credit
card at the kiosk to check out a video.

= The software can look up movies and actors by keywords.
= A customer can check out up to 3 movies, for 5 days each.
= |ate fees can be paid at the time of return or at next checkout.

12

Java's object-oriented
features (overview)

Fields

e field: A variable inside an object that is part of its state.
— Each object has its own copy of each field.

e Declaration syntax:

private type name;

— Example:

public class Poilnt {
private int x;
private int y;

14

Instance methods

e instance method (or object method): Exists inside each object of a
class and gives behavior to each object.

public type name (parameters) {
statements;

}

" same syntax as static methods, but without static keyword

Example:

public void tranlate(int dx, 1int dy) {
X += dx;
y += dy;

15

Categories of methods

e accessor: A method that lets clients examine object state.
" Examples: distance,distanceFromOrigin

= often has a non-void return type

e mutator: A method that modifies an object's state.

" Examples: setLocation, translate

e helper: Assists some other method in performing its task.
= often declared as private so outside clients cannot call it

16

The toString method

tells Java how to convert an object into a St ring for printing

public String toString () {
code that returns a String representing this object;

= Method name, return, and parameters must match exactly.

= Example:

// Returns a String representing this Point.
public String toString () {
return " (" + X + ", " + y + ") ";

}

17

Constructors

e constructor: Initializes the state of new objects.

public type (parameters)
statements;

}

— runs when the client uses the new keyword

— no return type is specified; implicitly "returns" the new object

public class Poilnt {
private int x;
private 1nt vy;

public Point (int initialX, int initialY) {
X = 1nitialX;
y = initialy;

/

18

The keyword this

« this : Refers to the implicit parameter inside your class.

(a variable that stores the object on which a method is called)

= Refertoafield: this.field

= Callamethod: this.method (parameters) ;

= One constructor this (parameters) ;
can call another:

19

Calling another constructor

public class Poilnt {
private int x;
private 1nt y;

public Point () {
this (0, 0);

| T~

public Point (int x, int y) {
this.x X;
this.y Y

}

e Avoids redundancy between constructors

\ e Only a constructor (not a method) can call another constructor

/

20

Inheritance

e inheritance: Forming new classes based on existing ones.

a way to share/reuse code between two or more classes

superclass: Parent class being extended.
subclass: Child class that inherits behavior from superclass.

e gets a copy of every field and method from superclass

is-a relationship: Each object of the subclass also "is a(n)" object of the
superclass and can be treated as one.

Employee
20-page manual
i3

Lawyer Secretary
2-page manual 1-page manual

T

‘ LegalSecretary

Marketer
3-page manual

1-page manual

21

_

Inheritance syntax

public class name extends superclass

= Example:

public class Lawyer extends Employee ({

e By extending Employee, each Lawyer object now:

= receives a copy of each method from Employee automatically
" can be treated as an Employee by client code

e Lawyer can also replace ("override") behavior from Employee.

22

The super keyword

e A subclass can call its parent's method/constructor:

super . method (parameters) // method
super (parameters) ; // constructor

public class Lawyer extends Employee ({
public Lawyer (String name) {
super (name) ;

J

// give Lawyers a $5K raise (better)
public double getSalary () {
double baseSalary = super.getSalary();
return baseSalary + 5000.00;

23

Shapes example

e Consider the task of writing classes to represent 2D shapes such as
Circle,Rectangle,and Triangle.

e Certain attributes or operations are common to all shapes:
= perimeter: distance around the outside of the shape
" Jrea: amount of 2D space occupied by the shape

= Every shape has these, but each computes them differently.

24

Interfaces

e interface: A list of methods that a class can promise to implement.

" |nheritance gives you an is-a relationship and code sharing.
e A Lawyer can be treated as an Employee and inherits its code.

" |nterfaces give you an is-a relationship without code sharing.
e ARectangle object can be treated as a Shape but inherits no code.

= Analogous to non-programming idea of roles or certifications:

e "I'm certified as a CPA accountant.
This assures you | know how to do taxes, audits, and consulting."

e "I'm 'certified' as a Shape, because | implement the Shape interface.
This assures you | know how to compute my area and perimeter."

25

Interface syntax

public i1nterface name {
public type name (type name,
public type name (type name,

public type name (type name,
}

Example:
public interface Shape {
public double areal();

public double perimeter();

type name) ;
type name) ;

type name) ;

«interface»
Shape

arearl
perimetar)
iy

__

Circle

radius
Circlefradiug)
arean
perimeterd

Rectangle

width, height

Rectandlefw b
areal
perimeterd

Triangle

a b«

Triandleda, b, ©)
arean
perimeterd

26

Implementing an interface

public class name implements interface ({

e A class can declare that it "implements" an interface.

= The class promises to contain each method in that interface.
(Otherwise it will fail to compile.)

= Example:
public class Rectangle implements Shape ({

public double area() { ... }
public double perimeter () { ... }

27

Interfaces + polymorphism

¢ Interfaces benefit the client code author the most.

= they allow polymorphism
(the same code can work with different types of objects)

public static void printInfo(Shape s) {

System.out.println("The shape: " + s);

System.out.println("area : " + s.areal());

System.out.println("perim: " + s.perimeter());
(

System.out.println();

Circle circ = new Circle(12.0);
Triangle tri = new Triangle(b, 12, 13);
printInfo(eire) ;

printInfo(tri);

28

