
CSE 331 – Spring 2010

 Usually in-code for Java (Javadoc)

 Published to clients who use your
implementation

 Two main parts
◦ Class Javadoc

◦ Method Javadoc

 Class overview – description in English
◦ What the class represents

◦ Why someone might use it

 @specfield tags – the “parts” or “components”
of the abstract object
◦ @specfield <name> : <type> // <description>

◦ Types independent of actual Java types; e.g. string,
integer, sequence, decimal

/**

* <Class overview goes here>

* @specfield name: string //name of account owner

* @specfield balance: integer //balance of account, in
US cents

* @specfield transactions: sequence //history of
transactions,

* //most recent listed first

*/

public interface BankAccount {

//...

 See Chain.java

 @requires – what is assumed when the method is
called

 @modifies – a list of “specfields” identifying what
might be modified by the method

 @effects – how the items in the “modifies” list are
affected

 @return – what the method returns

 @throws – each of these lists an exception and
the conditions under which it will be thrown

 Optional description of what the method does in
English

 See Chain.java

 Not part of the specification, so use regular
comment blocks

 Primarily to help other developers understand
how your code works

 Two main sections we advocate in CSE331
◦ Abstraction functions

◦ Representation invariants

 Explains the link between the concrete
implementation and specification of
specfields

 Defines the specfields in terms of the actual
class fields

 Usually mathematical or formal in nature

From PS1, RatNum (rational number):

private final int numer;

private final int denom;

// Abstraction Function:

// A RatNum r is NaN if r.denom = 0,

// or (r.numer / r.denom) otherwise.

 See Chain.java

 Tells what configurations of your class
variables are “legal”

 Should be true of all instances of your object
at all times (otherwise there is a bug)

 We will often require you to create a
checkRep() method for each class that checks
the RI for any given instance

 You will call checkRep() invariant at the end of
each public method, at least during testing

 From RatNum in PS1, the representation
invariant is
◦ r.denom >= 0 && (r.denom > 0 there does not

exist integer i > 1 such that r.numer mod i == 0
and r.denom mod i == 0)

◦ i.e. the rational number must have a non-negative
denominator and be in lowest terms

 See Chain.java

