
CSE 331 – Spring 2010

 Usually in-code for Java (Javadoc)

 Published to clients who use your
implementation

 Two main parts
◦ Class Javadoc

◦ Method Javadoc

 Class overview – description in English
◦ What the class represents

◦ Why someone might use it

 @specfield tags – the “parts” or “components”
of the abstract object
◦ @specfield <name> : <type> // <description>

◦ Types independent of actual Java types; e.g. string,
integer, sequence, decimal

/**

* <Class overview goes here>

* @specfield name: string //name of account owner

* @specfield balance: integer //balance of account, in
US cents

* @specfield transactions: sequence //history of
transactions,

* //most recent listed first

*/

public interface BankAccount {

//...

 See Chain.java

 @requires – what is assumed when the method is
called

 @modifies – a list of “specfields” identifying what
might be modified by the method

 @effects – how the items in the “modifies” list are
affected

 @return – what the method returns

 @throws – each of these lists an exception and
the conditions under which it will be thrown

 Optional description of what the method does in
English

 See Chain.java

 Not part of the specification, so use regular
comment blocks

 Primarily to help other developers understand
how your code works

 Two main sections we advocate in CSE331
◦ Abstraction functions

◦ Representation invariants

 Explains the link between the concrete
implementation and specification of
specfields

 Defines the specfields in terms of the actual
class fields

 Usually mathematical or formal in nature

From PS1, RatNum (rational number):

private final int numer;

private final int denom;

// Abstraction Function:

// A RatNum r is NaN if r.denom = 0,

// or (r.numer / r.denom) otherwise.

 See Chain.java

 Tells what configurations of your class
variables are “legal”

 Should be true of all instances of your object
at all times (otherwise there is a bug)

 We will often require you to create a
checkRep() method for each class that checks
the RI for any given instance

 You will call checkRep() invariant at the end of
each public method, at least during testing

 From RatNum in PS1, the representation
invariant is
◦ r.denom >= 0 && (r.denom > 0 there does not

exist integer i > 1 such that r.numer mod i == 0
and r.denom mod i == 0)

◦ i.e. the rational number must have a non-negative
denominator and be in lowest terms

 See Chain.java

