
Equality

CSE 331

Spring 2010

Object equality

• A simple idea – we have intuitions about
equality:
– Two objects are equal if they have the same value

– Two objects are equal if they are indistinguishable

• A subtle idea – our intuitions are not
complete:

• A subtle idea – our intuitions are not
complete:
– Is equality temporary or forever?

– How does equality behave in the presence of
inheritance?

– Is equality of collections related to equality of
elements?
• What about self-containment?

– How can we make equality an efficient operation?

Reference equality

• a == b

• True if a and b point to

the same object

a b

• Strongest definition of

equality

• Weaker definitions of

equality can be useful

Object.equals method

The Object.equals method is very simple:

public class Object {

public boolean equals(Object o) {

return this == o;return this == o;

}

}

Yet its specification is much more elaborate.
Why?

Equals specification
public boolean equals(Object obj)

Indicates whether some other object is "equal to" this one. The equals method
implements an equivalence relation:

• It is reflexive: for any reference value x, x.equals(x) should return
true.

• It is symmetric: for any reference values x and y, x.equals(y) should
return true if and only if y.equals(x) returns true.

• It is transitive: for any reference values x, y, and z, if x.equals(y)
returns true and y.equals(z) returns true, then x.equals(z) should
return true. return true.

• It is consistent: for any reference values x and y, multiple invocations
of x.equals(y) consistently return true or consistently return false,
provided no information used in equals comparisons on the object is
modified.

• For any non-null reference value x, x.equals(null) should return false.
The equals method for class Object implements the most discriminating possible

equivalence relation on objects; that is, for any reference values x and y, this
method returns true if and only if x and y refer to the same object (x==y has the
value true).

Parameters:

obj - the reference object with which to compare.
Returns:

true if this object is the same as the obj argument; false otherwise.

See Also:

Boolean.hashCode(), Hashtable

The Object contract

• Object class is designed for inheritance

• Its specification will apply to all subtypes

– In other words, all Java classes

• So, its specification must be flexible

– Specification for equals cannot later be weakened– Specification for equals cannot later be weakened

– If a.equals(b) were specified to test a==b, then no class
could change this and still be a true subtype of Object

– Instead spec for equals enumerates basic properties
that clients can rely on it to have in subtypes of Object

– a==b is compatible with these properties, but so are
other tests

Properties of equals

Equality is reflexive

a.equals(a) is true

Equality is symmetric

a.equals(b) ⇔ b.equals(a)

Equality is transitiveEquality is transitive

a.equals(b) and b.equals(c) ⇒ a.equals(c)

No object equals null

a.equals(null) = false

(other conditions omitted for now)

Default implementation (reference equality) works fine

Beyond reference equality

Often want to compare objects less strictly
public class Duration {

private final int min;

private final int sec;

public Duration(int min, int sec) {public Duration(int min, int sec) {

this.min = min; this.sec = sec;

}

}

Duration d1 = new Duration(10,5);

Duration d2 = new Duration(10,5);

System.out.println(d1.equals(d2)); // False

// But maybe we would like this to be true – why not?

An incorrect equals method

Let's try adding an equals method that compares
fields:

public boolean equals(Duration d) {

return d.min == min && d.sec == sec;

}

Duration d1 = new Duration(10,5);

Duration d2 = new Duration(10,5);

System.out.println(d1.equals(d2)); // True!

This is reflexive, symmetric, transitive for Duration
objects

Must override Object.equals

This was overloading, not overriding

Object d1 = new Duration(10,5);

Object d2 = new Duration(10,5);Object d2 = new Duration(10,5);

System.out.println(d1.equals(d2)); // False!

Use the @Override annotation

A correct equals method for Duration

@Override // compiler warning if type mismatch

public boolean equals(Object o) {

if (! (o instanceof Duration))

return false;

Duration d = (Duration) o;Duration d = (Duration) o;

return d.min == min && d.sec == sec;

}

Object d1 = new Duration(10,5);

Object d2 = new Duration(10,5);

System.out.println(d1.equals(d2)); // True

Equality and inheritance

Add a nano-second field for fractional seconds:

public class NanoDuration extends Duration {

private final int nano;

public NanoDuration(int min, int sec, int nano) {public NanoDuration(int min, int sec, int nano) {

super(min,sec);

this.nano = nano;

}

// If we inherit equals() from Duration, nano will be ignored

// and objects with different nanos will be equal.

}

symmetry bug

A first attempt at an equals method for NanoDuration:

public boolean equals(Object o) {

if (! (o instanceof NanoDuration))

return false;

NanoDuration nd = (NanoDuration) o;NanoDuration nd = (NanoDuration) o;

return super.equals(nd) && nano == nd.nano;

}

This is not symmetric!

Duration d1 = new NanoDuration(5,10,15);

Duration d2 = new Duration(5,10);

System.out.println(d1.equals(d2)); // false

System.out.println(d2.equals(d1)); // true

symmetry fix for NanoDuration.equals

public boolean equals(Object o) {

if (! (o instanceof Duration))

return false;

// if o is a normal Duration, compare

without nanowithout nano

if (! (o instanceof NanoDuration))

return super.equals(o);

NanoDuration nd = (NanoDuration) o;

return super.equals(nd) && nano == nd.nano;

}

This is not transitive!

Transitivity bug

Duration d1 = new NanoDuration(5,10,15);

Duration d2 = new Duration(5,10);

Duration d3 = new NanoDuration(5,10,30);

System.out.println(d1.equals(d2)); // true

System.out.println(d2.equals(d3)); // true

System.out.println(d1.equals(d3)); // false!

What is the solution?

Can check exact class in Duration, rather than just
use instanceof

But then can't do any minor subclassing, for example
to make an ArithmeticDuration class that offers no
new fields, just a few new operators

checking exact class

Duration can avoid comparing against an instance of
a subtype:

public boolean equals(Object o) {

if (o == null)

return false;return false;

if (!o.getClass().equals(getClass()))

return false;

Duration d = (Duration) o;

return d.min == min && d.sec == sec;

}

But now every subtype must override equals

Even if it wants the identical definition

Hard to compare subtypes to one another

Another solution: avoid inheritance

Can use composition:

public class NanoDuration {

private final Duration duration;

private final int nano;

// ...// ...

}

NanoDurations and Durations are unrelated
There is no presumption that NanoDurations and

Durations may be equal

Can’t use NanoDurations where Durations are expected

Date and Timestamp in Java

public class Timestamp extends Date

“A thin wrapper around java.util.Date that ... adds
the ability to hold the SQL TIMESTAMP nanos value
and provides formatting and parsing operations ...”

Caveat 1Caveat 1

“The Timestamp.equals(Object) method is not
symmetric with respect to the
java.util.Date.equals(Object) method.”

Caveat 2

“Also, the hashcode method uses the underlying
java.util.Date implementation and therefore does
not include nanos in its computation.”

Date and Timestamp in Java

Caveat 3

“Due to the differences between the Timestamp class
and the java.util.Date class mentioned above, it is
recommended that code not view Timestamp
values generically as an instance of java.util.Date.
The inheritance relationship between Timestamp The inheritance relationship between Timestamp
and java.util.Date really denotes implementation
inheritance, and not type inheritance.”

Translation:

“Timestamps are not Dates. Ignore that extends

Dates bit in the class declaration.”

public boolean equalsequalsequalsequals(Timestamp ts)
“Tests to see if this Timestamp object is equal to the

given Timestamp object.”

public boolean equalsequalsequalsequals(Object ts)

Timestamp: overloading error

public boolean equalsequalsequalsequals(Object ts)
“Tests to see if this Timestamp object is equal to the

given object. This version of the method equals has

been added to fix the incorrect signature of

Timestamp.equals(Timestamp) and to preserve

backward compatibility with existing class files. Note:

This method is not symmetric with respect to the

equals(Object) method in the base class.”

A special case: uninstantiable types

• No equality problem if superclass cannot be
instantiated!

– For example, suppose Duration were abstract

– Then no troublesome comparisons can arise
between Duration and NanoDuration instancesbetween Duration and NanoDuration instances

• This may be why this problem is not very
intuitive

– In real life, “superclasses” can't be instantiated

– We have specific apples and oranges, never
unspecialized Fruit

Efficiency of equality

Equality tests can be slow

E.g. testing if two text documents are equal

Or testing for equality between millions of objects

Useful to quickly prefilter

E.g. are documents same length?E.g. are documents same length?

If not, they are not equal

If so, then they are worth testing for equality

Hash codes are efficient prefilters for equality

Do objects have same hash code?

If not, they are not equal

If so, then they are worth testing for equality

specification for Object.hashCode

public int hashCode()

“Returns a hash code value for the object. This

method is supported for the benefit of hashtables

such as those provided by java.util.HashMap.”

The general contract of hashCode is:

– Self-consistent:

o.hashCode() == o.hashCode()

...so long as o doesn’t change between the calls

– Consistent with equality:

a.equals(b)⇒ a.hashCode()==b.hashCode()

Many possible hashCode implementations

public class Duration {

public int hashCode() {

return 1; // always safe, but makes hash tables
} // inefficient (no prefiltering)

public int hashCode() {

return min; // safe, but inefficient for Durations
} // that differ in sec field only

public int hashCode() {

return min+sec; // safe, and changes in any field
} // will tend to change code

Consistency of equals and hashCode

Suppose we change the spec for Duration.equals:
// Return true if o and this represent the same number of seconds

public boolean equals(Object o) {

if (! (o instanceof Duration))

return false;

Duration d = (Duration) o;Duration d = (Duration) o;

return 60*min+sec == 60*d.min+d.sec;

}

We must update hashCode, or we will get

inconsistent behavior. This works:
public int hashCode() {

return 60*min+sec;

}

Equality, mutation, and time

• If two objects are equal now, will they always be
equal?

– In mathematics, the answer is “yes”

– In Java, the answer is “you choose”

– The Object contract doesn't specify this (why not?)– The Object contract doesn't specify this (why not?)

• For immutable objects

– Abstract value never changes

– Equality is automatically forever

• For mutable objects, equality can either:

– Compare abstract values (field-by-field comparison)

– Or be eternal

– Can't do both! Since abstract value can change.

examples

StringBuffer is mutable, and takes the “eternal” approach
StringBuffer s1 = new StringBuffer("hello");

StringBuffer s2 = new StringBuffer("hello");

System.out.println(s1.equals(s1)); // true
System.out.println(s1.equals(s2)); // false

This is reference (==) equality, which is the only way to
guarantee eternal equality for mutable objects.
Compare:

Date d1 = new Date(0); // Jan 1, 1970 00:00:00 GMT
Date d2 = new Date(0);

System.out.println(d1.equals(d2)); // true
d2.setTime(1); // a millisecond later
System.out.println(d1.equals(d2)); // false

Behavioral and observatonal equivalence

Two objects are “behaviorally equivalent” if:
There is no sequence of operations that can distinguish

them

This is “eternal” equality

Two Strings with same content are behaviorally
equivalent, two Dates or StringBuffers with same equivalent, two Dates or StringBuffers with same
content are not

Two objects are “observationally equivalent” if:
There is no sequence of observer operations that can

distinguish them
Excluding mutators

Excluding == (permitting == would require reference equality)

Two Strings, Dates, or StringBuffers with same content
are observationally equivalent

Equality and mutation

Date class implements observational equality

Can therefore violate rep invariant of a Set
container by mutating after insertion
Set<Date> s = new HashSet<Date>();

Date d1 = new Date(0);Date d1 = new Date(0);

Date d2 = new Date(1000);

s.add(d1);

s.add(d2);

d2.setTime(0);

for (Date d : s) { // prints two identical Dates

System.out.println(d);

}

Pitfalls of observational equivalence

Equality for set elements would ideally be behavioral

Java makes no such guarantee (or requirement)

So have to make do with caveats in specs:

“Note: Great care must be exercised if mutable objects are “Note: Great care must be exercised if mutable objects are

used as set elements. The behavior of a set is not

specified if the value of an object is changed in a

manner that affects equals comparisons while the

object is an element in the set.”

Same problem applies to keys in maps

Mutation and hash codes

Sets also assume hash codes don't change

Mutation and observational equivalence can break this
assumption too:

List<String> friends =

new LinkedList<String>(Arrays.asList("yoda","zaphod"));

List<String> enemies = ...; // any other listList<String> enemies = ...; // any other list

Set<List<String>> h = new HashSet<List<String>>();

h.add(friends);

h.add(enemies);

friends.add("weatherwax");

System.out.println(h.contains(friends)); // probably false

for (List<String> lst : h) {

System.out.println(lst.equals(friends));

} // one “true” will be printed - inconsistent!

More container wrinkles: self-containment

equals and hashCode methods on containers are
recursive, e.g. hashCode for List<E>:

int code = 1;

for (Object o : list) {

code = 31*code + (o==null ? 0 : o.hashCode());code = 31*code + (o==null ? 0 : o.hashCode());

}

This causes an infinite loop:
List<Object> lst = new LinkedList<Object>();

lst.add(lst);

int code = lst.hashCode();

Summary:

All equals are not equal!

– reference equality

– behavioral equality

– observational equality

Summary: Java specifics

• Mixes different types of equality

– Objects different from collections

• Extendable specifications

– Objects, subtypes can be less strict – Objects, subtypes can be less strict

• Only enforced by the specification

• Speed hack

– hashCode

Summary: object-oriented Issues

• Inheritance

– Subtypes inheriting equal can break the spec. Many
subtle issues.

– Forcing all subtypes to implement is cumbersome

• Mutable objects• Mutable objects

– Much more difficult to deal with

– Observational equality

– Can break reference equality in eollections

• Abstract classes

– If only the subclass is instantiated, we are ok…

Summary: software engineering

• Equality is such a simple concept

• But…

– Programs are used in unintended ways

– Programs are extended in unintended ways

• Many unintended consequences• Many unintended consequences

• In equality, these are addressed using a
combination of:

– Flexibility

– Carefully written specifications

– Manual enforcement of the specifications

• perhaps by reasoning and/or testing

