
Subtypes

CSE 331

Spring 2010

What is subtyping?

• Sometimes every B is an A
– In a library database:
• every book is a library holding

• every CD is a library holding

• Subtyping expresses this in the programSubtyping expresses this in the program
– programmer declares B is a subtype of A

– meaning: "every object that satisfies interface B
also satisfies interface A"

• Goal: code written using A's specification
operates correctly even if given a B

Subtypes are substitutable

• Subtypes are substitutable for supertypes
– Instances of subtype won't surprise client by failing

to meet guarantees made in supertype's
specification

– Instances of subtype won't surprise client by
having expectations not mentioned in supertype'shaving expectations not mentioned in supertype's
specification

• We say that B is a true subtype of A if B has a
stronger specification than A
– This is not the same as a Java subtype

– Java subtypes that are not true subtypes are
dangerous

Subtyping and subclassing

• Substitution (subtype)

– B is a subtype of A iff an object of B can masquerade
as an object of B in any context

• Inheritance (subclass)• Inheritance (subclass)

– Abstract out repeated code

– Enables incremental changes to classes

• Every subclass is a Java subtype

– But not necessarily a true subtype

Subclasses support inheritance
Inheritance makes it easy to add functionality

Suppose we run a web store with a class for Products...

class Product {

private String title, description;

private float price;

public float getPrice() { return price; }

public float getTax() { return getPrice() * 0.05f; }

// ...

}

... and we decide we want another class for Products
that are on sale

Code copying is a bad way to add functionality

We would never dream of cutting and pasting
like this:

class SaleProduct {

private String title, description;private String title, description;

private float price;

private float factor;

public float getPrice() { return price*factor; }

public float getTax() { return getPrice() * 0.05f; }

//...

}

Inheritance makes small extensions small

It’s much better to do this:

class SaleProduct extends Product {

private float factor;private float factor;

public float getPrice() {

return super.getPrice()*factor;

}

//...

}

Benefits of subclassing & inheritance

Don’t repeat unchanged fields and methods

In implementation
simpler maintenance: just fix bugs once

In specification
Clients who understand the superclass specification need

only study novel parts of subclass

Modularity: can ignore private fields and methods Modularity: can ignore private fields and methods
of superclass (if properly defined)

Differences are not buried under mass of similarities

Ability to substitute new implementations
Clients need not change their code to use new

subclasses

Subclassing can be misused

Poor planning leads to muddled inheritance
hierarchy
Relationships may not match untutored intuition

If subclass is tightly coupled with superclass
Can depend on implementation details of superclass

Changes in superclass can break subclass (“fragile Changes in superclass can break subclass (“fragile
base class”)

Subtyping is the source of most benefits of
subclassing
– Just because you want to inherit an

implementation does not mean you want to inherit
a type – and vice versa!

Every square is a rectangle (elementary school)

interface Rectangle {
// effects: fits shape to given size, that is:
// thispost.width = w, thispost.height = h
void setSize(int w, int h);

}

Choose the best option for Square.setSize():

interface Square implements Rectangle {

// requires: w = h
// effects: fits shape to given sizeA // effects: fits shape to given size
void setSize(int w, int h);

// effects: sets all edges to given size
void setSize(int edgeLength);

// effects: sets this.width and this.height to w
void setSize(int w, int h);

// effects: fits shape to given size
// throws BadSizeException if w != h
void setSize(int w, int h) throws BadSizeException;

}

A

B

C

D

Square and rectangle are unrelated (Java)

Square is not a (true subtype of) Rectangle:
Rectangles are expected to have a width and height that

can be changed independently

Squares violate that expectation, could surprise client

Rectangle is not a (true subtype of) Square:
Squares are expected to have equal widths and heights

Rectangle

Square

SquareSquares are expected to have equal widths and heights

Rectangles violate that expectation, could surprise client

Inheritance isn't always intuitive
Benefit: it forces clear thinking and prevents errors

Solutions:
Make them unrelated (or siblings under a common parent)

Make them immutable

Square

Rectangle

class Hashtable<K,V> {

// modifies: this

// effects: associates the specified value with the specified key

public void put (K key, V value);

// returns: value with which the

// specified key is associated

public V get (K key);

}

Properties class stores string key-value pairs.
It extends Hashtable functionality.

What’s the problem?

Inappropriate subtyping in the JDK

Hashtable tbl = new Properties();
}

// Keys and values are strings.

class Properties extends Hashtable<Object,Object> { // simplified

// modifies: this

// effects: associates the specified value with the specified key

public void setProperty(String key, String val) { put(key,val); }

// returns: the string with which the key is associated

public String getProperty(String key) { return(String)get(key); }

}

tbl.put(“One”, new Integer(1));

Violation of superclass specification

Properties class has a simple rep invariant

keys, values are Strings.

But client can treat Properties as a Hashtable

Can put in arbitrary content, break rep invariant

From Javadoc:From Javadoc:

Because Properties inherits from Hashtable, the put and
putAll methods can be applied to a Properties object. ...
If the store or save method is called on a
"compromised" Properties object that contains a non-
String key or value, the call will fail.

Also, semantics are more confusing than I've shown

getProperty("prop") works differently than
get("prop") !

Solution 1: Generics

Bad choice:
class Properties extends Hashtable<Object,Object> { ... }

Better choice:
class Properties extends Hashtable<String,String> { ... }

Why didn’t the JDK designers make this choice?

Aside: subtyping for generics

List<Number>

Number

Integer

List<?>

List<? extends Number>

List<Object>
List

Object

Subtyping requires invariant generic types
Exception: super wildcard is a supertype of what it matches
Don’t use raw types! (CSE 331 forbids it)

LinkedList<Integer>

List<Number>

List<Integer>

ArrayList<Integer>

List<Double>

Solution 2: Composition

class Properties { // no “extends” clause!

private Hashtable hashtable; // the “delegate”

// requires: key and value are not null

// modifies: this

// effects: associates specified value with specified key

public void setProperty (String key, String value) {public void setProperty (String key, String value) {

hashtable.put(key,value);

}

// effects: returns string with which key is associated

public String getProperty (String key) {

return (String) hashtable.get(key);

}

...

}

Substitution principle

• If B is a subtype of A, a B can always be substituted for an A

• Any property guaranteed by supertype must be guaranteed
by subtype
– The subtype is permitted to strengthen & add properties

– Anything provable about an A is provable about a B

– If instance of subtype is treated purely as supertype – only – If instance of subtype is treated purely as supertype – only
supertype methods and fields queried – then result should be
consistent with an object of the supertype being manipulated

• No specification weakening
– No method removal

– An overriding method has
• a weaker precondition

• a stronger postcondition

Substitution principle

• Constraints on methods

– For each method in supertype, subtype must have a

corresponding overriding method

• may also introduce new methods

• Each overriding method must:• Each overriding method must:

– Ask nothing extra of client (“weaker precondition”)

• Requires clause is at most as strict as in the supertype method

– Guarantee at least as much (“stronger postcondition”)

• Effects clause is at least as strict as in the supertype method

• No new entries in modified clause

Substitution: spec weakening

• Method inputs:

– Argument types may be replaced with supertypes

(“contravariance”).

– This doesn't place any extra demand on the client.

• Java forbids any changeJava forbids any change

• Method results:

– Result type may be replaced with a subtype (“covariance”).

• This doesn't violate any expectation of the client.

– No new exceptions (for values in the domain)

– Existing exceptions can be replaced with subtypes.

• This doesn't violate any expectation of the client.

Substitution exercise

Suppose we have a method which, when given one

product, recommends another:
Product recommend(Product ref);

Which of these are possible forms of method in a subtype?
Product recommend(SaleProduct ref); // badProduct recommend(SaleProduct ref);

SaleProduct recommend(Product ref);

Product recommend(Object ref);

Product recommend(Product ref) throws NoSaleException;

Same kind of reasoning for exception subtyping, and

modifies clause

// bad

// OK

// OK, but is Java overloading

// bad

class Hashtable { // class is somewhat simplified (generics omitted)

// modifies: this

// effects: associates the specified value with the specified key

public void put (Object key, Object value);

// returns: value with which the

// specified key is associated

public Object get (Object key);

}

JDK example

Arguments are subtypes}

class Properties extends Hashtable {

// modifies: this

// effects: associates the specified value with the specified key

public void put(String key, String val) { super.put(key,val); }

// returns: the string with which the key is associated

public String get (String key) { return(String)super.get(key); }

}

Can throw an exception
New exception = weaker spec!

Result type is a subtype
Stronger guarantee = OK

Arguments are subtypes
Stronger requirement = weaker

specification!

Is this good Inheritance?

Depends on the members, methods and the

specifications

Java subtypes

• Java types:

– Defined by classes, interfaces, primitives

• B is Java subtype of A if:

– declared relationship (B extends A, B
implements A)implements A)

• Compiler checks that, for each
corresponding method:

– same argument types

– compatible result types (“covariant return”)

– no additional declared exceptions

True subtypes versus Java subtypes

• Java requires type equality for parameters
– Different types are treated as different methods

– More than needed but simplifies syntax and
semantics.

• Java does permit covariant returnsJava does permit covariant returns
– A recent language feature, not reflected in (e.g.)

clone

• Java has no notion of specification beyond
method signatures
– No check on precondition/postcondition

– No check on promised properties (invariants)

Compiler guarantees about Java subtypes

• Objects are guaranteed to be (Java) subtypes
of their declared type

– If a variable of declared (compile-time) type T holds
a reference to an object of actual (runtime) type T',
then T' is a (Java) subtype of Tthen T' is a (Java) subtype of T

• Corollaries:

– Objects always have implementations of the
methods specified by their declared type

– If all subtypes are true subtypes, then all objects
meet the specification of their declared type

• Rules out a huge class of bugs

Inheritance breaks encapsulation

public class InstrumentedHashSet<E> extends HashSet<E> {

private int addCount = 0; // count attempted insertions

public InstrumentedHashSet(Collection<? extends E> c) {

super(c);

}

public boolean add(E o) {

addCount++;

return super.add(o);

}

public boolean addAll(Collection<? extends E> c) {

addCount += c.size();

return super.addAll(c);

}

public int getAddCount() { return addCount; }

}

Dependence on implementation

What does this code print?

InstrumentedHashSet<String> s =

new InstrumentedHashSet<String>();

System.out.println(s.getAddCount());

s.addAll(Arrays.asList("CSE", "331”));

System.out.println(s.getAddCount());

Answer depends on implementation of addAll() in HashSet

// 0

// 4!

• Answer depends on implementation of addAll() in HashSet
– Different implementations may behave differently!
– HashSet.addAll() calls add() ⇒ double-counting

• AbstractCollection.addAll specification states:

– “Adds all of the elements in the specified collection to this collection.”

– Does not specify whether it calls add()

• Lesson: designers should plan for their classes to be extended

Solutions

1. Change spec of HashSet

Indicate all self-calls

Less flexibility for implementers of specification

2. Work around spec ambiguity by avoiding self-
calls

2. Work around spec ambiguity by avoiding self-
calls

a) “Re-implement” methods such as addAll

Requires re-implementing methods

b) Use a wrapper

No longer a subtype (unless an interface is handy)

Bad for callbacks, equality tests, etc.

Solution 2b: composition

public class InstrumentedHashSet<E> {

private final HashSet<E> s = new HashSet<E>();

private int addCount = 0;

public InstrumentedHashSet(Collection<? extends E> c) {

this.addAll(c);

}

public boolean add(E o) {public boolean add(E o) {

addCount++; return s.add(o);

}

public boolean addAll(Collection<? extends E> c) {

addCount += c.size(); return s.addAll(c);

}

public int getAddCount() { return addCount; }

// ... and every other method specified by HashSet<E>

}

The implementation

no longer matters

Composition (wrappers, delegation)

• Implementation reuse without inheritance

• Easy to reason about; self-calls are irrelevant

• Example of a “wrapper” class

• Works around badly-designed classes• Works around badly-designed classes

• Disadvantages (may be a worthwhile price to pay):

– May be hard to apply to callbacks, equality tests

– Tedious to write (your IDE will help you)

– Does not preserve subtyping

Composition does not preserve subtyping

• InstrumentedHashSet is not a HashSet
anymore

– So can't easily substitute it

• It may be a true subtype of HashSet

– But Java doesn't know that!– But Java doesn't know that!

– Java requires declared relationships

– Not enough to just meet specification

• Interfaces to the rescue

– Can declare that we implement interface Set

– If such an interface exists

Interfaces reintroduce Java subtyping

public class InstrumentedHashSet<E> implements Set<E> {

private final HashSet<E> s = new HashSet<E>();

private int addCount = 0;

public InstrumentedHashSet(Collection<? extends E> c) {

this.addAll(c);

}

public boolean add(E o) {

addCount++;addCount++;

return s.add(o);

}

public boolean addAll(Collection<? extends E> c) {

addCount += c.size();

return s.addAll(c);

}

public int getAddCount() { return addCount; }

// ... and every other method specified by Set<E>

}

Avoid encoding implementation details
public class InstrumentedSet<E> implements Set<E> {

private final Set<E> s;

private int addCount = 0;

public InstrumentedSet(Set<E> s) {

this.s = s; // BAD: representation exposure!

addCount = s.size();

}

public boolean add(E o) {

addCount++;

return s.add(o);

}

public boolean addAll(Collection<? extends E> c) {

addCount += c.size();

return s.addAll(c);

}

public int getAddCount() { return addCount; }

// ... and every other method specified by Set<E>

}

Interfaces and abstract classes

• Provide interfaces for your functionality
– Lets client code to interfaces rather than concrete

classes

– Allows different implementations later

– Facilitates composition, wrapper classes
• Basis of lots of useful, clever tricks

• We'll see more of these later• We'll see more of these later

• Consider providing helper/template abstract
classes
– Can minimize number of methods that new

implementation must provide

– Makes writing new implementations much easier

– Using them is entirely optional, so they don't limit
freedom to create radically different
implementations

Why interfaces instead of classes
• Java design decisions:

– A class has exactly one superclass

– A class may implement multiple interfaces

– An interface may extend multiple interfaces

• Observation:• Observation:

– multiple superclasses are difficult to use and to

implement

– multiple interfaces, single superclass gets most of

the benefit

Pluses and minuses of inheritance

• Inheritance is a powerful way to achieve code reuse

• Inheritance can break encapsulation

– A subclass may need to depend on unspecified details of

the implementation of its superclass

• e.g. pattern of self-calls• e.g. pattern of self-calls

– Subclass may need to evolve in tandem with superclass

• Safe within a package where implementation of both is under

control of same programmer

• Authors of superclass should design and document

self-use, to simplify extension

– Otherwise, avoid implementation inheritance and use

composition instead

Concrete, abstract, or interface?
Telephone

$9.99 homephone, Speakerphone, cellphone, Skype, VOIP phone

TV
CRT, Plasma, DLP, LCD

Table
Dining table, Desk, Coffee table

CoffeeCoffee
Espresso, Frappuccino, Decaf, Ice coffee

Computer
Laptop, Desktop, Server, Palmtop

CPU
Pentium, PowerPC, TigerSHARC

Professor

Ernst, Notkin

