Representation invariants
and abstraction functions

CSE 331
Spring 2010

ADTs and specifications

An ADT is more than just a data structure
data structure + a set of conventions

Specification: only in terms of the abstraction
Never mentions the representation

Representation invariant: Object - boolean
Indicates whether a data structure is well-formed
Defines the set of valid values of the data structure

Abstraction function: Object - abstract value
What the data structure means (as an abstract value)
How the data structure is to be interpreted
How do you compute the inverse, abstract value - Object ?

A data abstraction is defined by a
specification

A collection of procedural abstractions
Not a collection of procedures

Together, these procedural abstractions provide
A set of values

All the ways of directly using that set of values
Creating
Manipulating
Observing

Creators and producers make new values
Mutators change the value (but don’t affect = =

Observers allow one to tell values apart
The key to understanding

Implementation of an ADT
is provided by a class

To implement a data abstraction
— Select the representation of instances, the rep
— Implement operations in terms of that rep

Choose a representation so that

— It is possible (preferably easy) to implement
operations

— The most frequently used operations are efficient
But which will these be?

Abstraction allows changes to rep late in the game

CharSet Abstraction

/| Overview: A CharSet is a finite mutable set of Characters

/] effects: creates a fresh, empty CharSet
public CharSet ()

/l modifies: this
/I effects: this, .., = this . U {c}

post — pre
public void insert (Character c);

// modifies: this
/I effects: this,; = this, - {c}
public void delete (Character c);

/] returns: (c e this)
public boolean member (Character c);

I/ returns: cardinality of this
public int size ();

A CharSet implementation.
Where is the error?

class CharSet {
private List<Character> elts

= new ArrayList<Character>();
public void iInsert(Character c) {

}

elts.add(c);
by

public void delete(Character c) {

elts.remove(c);

public boolean member(Chal
return elts.contains(c)

public int size() {
return elts.size();
+

CharSet s =
Character a
= new Character(“a’);
s.insert(a);
s.insert(a);
s.delete(a);
IT (s.member(a))
// print “wrong”’;
else
// print “right”;

new CharSet();

Where Is the Error?

The answer to this question tells you what
needs to be fixed

Perhaps delete is wrong

It should remove all occurrences
Perhaps insert is wrong

It should not insert a character that is already there
How can we know?

The representation invariant tells us

The representation invariant

e States data structure well-formedness

e Captures information that must be shared across
implementations of multiple operations

Write it this way:

class CharSet {

// Rep i1nvariant: elts has no nulls and no duplicates
private List<Character> elts;

Or, if you are the pedantic sort:
V indices i of elts . elts.elementAt(i) # null
V indices i, j of elts .
| #] = — elts.elementAt(i).equals(elts.elementAt(j))

Now, we can locate the error

// Rep 1nvariant:
// elts has no nulls and no duplicates

public void i1nsert(Character c) {
elts.add(c);

}

public void delete(Character c) {
elts.remove(c);

}

Another rep invariant example

class Account {
private int balance;
// history of all transactions
private List<Transaction> transactions;

}

// real-world constraints:

balance 20

balance = Z, transactions.get(i).amount
// implementation-related constraints:
transactions # null

no nulls in transactions

Listing the elements of a CharSet

Consider adding the following method to CharSet

// returns: a List containing the members of this
public List<Character> getElts ();

Consider this implementation:
// Rep i1nvariant: elts has no nulls and no duplicates
public List<Character> getElts() { return elts; }

Does the implementation of getElts preserve the
rep invariant?

... sort of

Representation exposure

Consider the client code (outside the CharSet
implementation)

CharSet s = new CharSet();
Character a = new Character(“a’);
s.1nsert(a);

s.getElts().add(a);

s.delete(a);

iIT (s.member(a)) ..

Representation exposure is external access to the rep
Representation exposure is almost always evil

If you do it, document why and how
And feel guilty about it!

Two ways to avoid rep exposure

Exploit immutability
Character choose() {
return elts.elementAt(0);

}

Character is immutable.

Make a copy
List<Character> getElts() {
return new ArrayList<Character>(elts);
// or: return (ArrayList<Character>) elts.clone();

}

Mutating a copy doesn’t affect the original.
Don’t forget to make a copy on the way in!

Checking rep invariants

Should code check that the rep invariant holds?
— Yes, if it’s inexpensive
— Yes, for debugging (even when it’s expensive)
— It’s quite hard to justify turning the checking off
— Some private methods need not check (Why?)

Checking the rep invariant

Rule of thumb: check on entry and on exit (why?)

public void delete(Character c) {
checkRep();
elts.remove(c)
// 1s this guaranteed to get called?
// See handouts for a less error-prone way to check at exit.
checkRep(Q);

}

/** Verify that elts contains no duplicates. */
private void checkRep() {
for (int i = 0; i < elts.size(); i++) {
assert elts.indexOf(elts.elementAt(1)) == 1);
+
+

An alternative implementation:
« repOK() returns a boolean
» callers of repOK must check its return value

Practice defensive programming

Assume that you will make mistakes

Write and incorporate code designed to catch them

On entry:
Check rep invariant
Check preconditions (requires clause)

On exit:
Check rep invariant
Check postconditions

Checking the rep invariant helps you discover errors
Reasoning about the rep invariant helps you avoid errors

Or prove that they do not exist!
We will discuss such reasoning, later in the term

The rep invariant constrains structure,
not meaning

New implementation of insert that preserves the rep invariant:
public void 1nsert(Character c) {
Character cc = new Character(encrypt(c));
IT (lelts.contains(cc))
elts.addElement(cc);

}

public boolean member(Character c) {
return elts.contains(c);

1 CharSet s = new CharSet();

The program is still wrong Character a = new

Clients observe incorrect behavior Chc"flracter(a’));
s.insert(a);

' ?
Where is the grror. | if (s.member(a))
We must consider the meaning // print “right”;

The abstraction function helps us | a1 se

// print “wrong’”’;

Abstraction function: rep - abstract value

The abstraction function maps the concrete representation to the abstract value it
represents

AF: Object - abstract value
AF(CharSet this) = { ¢ | cis contained in this.elts }
“set of Characters contained in this.elts”
Typically not executable
The abstraction function lets us reason about behavior from the client perspective
Our real goal is to satisfy the specification of insert:

/I modifies: this
/I effects: this . = this,, U {c}

public void insert (Character c);
Once again we can place the blame

Applying the abstraction function to the result of the call to insert yields AF(elts) U
{encrypt(‘a’)}
What if we used this abstraction function?
AF(this) = { c | encrypt(c) is contained in this.elts }
AF(this) = { decrypt(c) | cis contained in this.elts }

Placing the blame

Our real goal is to satisfy the specification of insert:
// modifies: this
/I effects: this . = this,, U {c}
public void insert (Character c);
The AF tells us what the rep means (and lets us place the blame)

AF(CharSet this) ={ c | cis contained in this.elts }
Consider a call to insert:

On entry, the meaning is AF(this

On exit, the meaning is AF(this

) = elts
= AF(this

pre

) U {encrypt(‘a’)}

post) pre

What if we used this abstraction function?
AF(this) ={ c | encrypt(c) is contained in this.elts }
= { decrypt(c) | cis contained in this.elts }

Benevolent side effects

Different implementation of member:
boolean member(Character cl) {
int 1 = elts.index0f(cl);
it (1 == -1)
return false;
// move-to-front optimization AF AF
Character c2 = elts.elementAt(0);
elts.set(0, cl);
elts.set(1, c2);
return true;

}

Move-to-front speeds up repeated membership tests
Mutates rep, but does not change abstract value

AF maps both reps to the same abstract value

op
=

The abstraction function is a function

Q: Why do we map concrete to abstract rather
than vice versa?

1. It’s not a function in the other direction.
E.g., lists [a,b] and [b,a] each represent the set {a, b}
2. It's not as useful in the other direction.

Can construct objects via the provided operators

Writing an abstraction function

The domain: all representations that satisfy the
rep invariant
The range: can be tricky to denote

For mathematical entities like sets: easy

For more complex abstractions: give them fields
AF defines the value of each “specification field”

The overview section of the specification should
provide a way of writing abstract values

A printed representation is valuable for debugging

Summary

Rep invariant
Which concrete values represent abstract values

Abstraction function
Which abstract value each concrete value represents

Together, they modularize the implementation
Can examine operators one at a time
Neither one is part of the abstraction (the ADT)

In practice
Always write a representation invariant

Write an abstraction function when you need it
Write an informal one for most non-trivial classes
A formal one is harder to write and usually less useful

	Representation invariants�and abstraction functions
	ADTs and specifications
	A data abstraction is defined by a specification
	Implementation of an ADT�is provided by a class
	CharSet Abstraction
	A CharSet implementation.�Where is the error?
	Where Is the Error?
	The representation invariant
	Now, we can locate the error
	Another rep invariant example
	Listing the elements of a CharSet
	Representation exposure
	Two ways to avoid rep exposure
	Checking rep invariants
	Checking the rep invariant
	Practice defensive programming
	The rep invariant constrains structure, not meaning
	Abstraction function: rep → abstract value
	Placing the blame
	Benevolent side effects
	The abstraction function is a function
	Writing an abstraction function
	Summary

