
Test

CSECSE
Sprin

tingg

E 331E 331
ng 2010

Ariane 5

The rocket self destructed 37 seconThe rocket self-destructed 37 secon
Reason: A control software bug tha

Conversion from 64-bit floating point
an exceptionan exception

The floating point number was larger
Efficiency considerations had led to th
Program crashed rocket crashedProgram crashed rocket crashed

Total Cost: over $1 billion

5 rocket

nds after launchnds after launch
at went undetected

to 16-bit signed integer value had caused

r than 32767 (max 16-bit signed integer)
he disabling of the exception handler.

Therac-25 radiation
Excessive radiation killed

Updated design had removeUpdated design had remove
prevent the electron-beam
energy mode. Now all the
software.

The equipment control task
with the operator interfacwith the operator interfac
occurred if the operator c

This was missed during tesThis was missed during tes
since it took practice befo
operators were able to wo
quickly enough for the pr
to occur.

n therapy machine
patients
ed hardware interlocks thated hardware interlocks that

m from operating in its high-
e safety checks are done in the

k did not properly synchronize
ce task so that race conditionsce task, so that race conditions
changed the setup too quickly.
tingting,
ore
ork
roblem

Mars Pola

Legs deployed Sensor signaLegs deployed Sensor signa
craft had touched down (130
Then the descent engines shut d

h d i lThe error was traced to a singl
Why didn’t they blame the sens

NASA investigation panel blamNASA investigation panel blam
“are well known as difficult
engineering process”

ar Lander

al falsely indicated that theal falsely indicated that the
0 feet above the surface)
down prematurely
l b d li f f dle bad line of software code.
or?
mes for the lander failuremes for the lander failure,
t parts of the software-

Building Qualit
What Impacts the Software Qual

External
Correctness Does it do what

Reliability Does it do it acc

Efficiency Does it do with m

Integrity Is it secure?

Internal
Portability Can I use it und

Maintainability Can I fix it?

Flexibility Can I change it

Quality Assurance
Th f i blThe process of uncovering problem

Testing is a major part of QA.

ty Software
lity?

it supposed to do?

curately all the time?

minimum use of resources?

der different conditions?

or extend it or reuse it?

d i i h li f fms and improving the quality of software.

What Is Te

Part of validationPart of validation
Make sure module does

bi i iCombination of reasonin
Uncover problems, incre

First rule of testing
Do it early and do it ofteDo it early and do it ofte
as they are born, before
Automate the process ifAutomate the process if

Second rule of testing
Be systematic – if you th
bugs will hide in the cor

esting For?

what it is specified to do
d ing and testing

ease confidence

en – best to catch bugs as soonen best to catch bugs as soon
they have a chance to hide
you canyou can

hrash about randomly, the
rner until you're gone

Phases o

Unit TestingUnit Testing
Does each module do wh

Integration Testing
Do you get the expectedy g p
together?

Validation Testingg
Does the program satisfy

S t T tiSystem Testing
Does it work within the

of Testing

hat it supposed to do?

d results when the parts are put p p

y the requirements

overall system

Unit T

A test is at the level of aA test is at the level of a
Check if the implementa

ifi tispecification.

Black box testing
Ch t t d t ith tChoose test data without

Glass box (white box) teGlass box (white box) te
Choose test data with kn

esting

a method/class/interfacea method/class/interface
ation matches the

t l ki t i l t tit looking at implementation

estingesting
nowledge of implementation

How is test

Basic steps of a testBasic steps of a test
1) Choose input data/co

) i h d2) Define the expected o
3) Run program/method

h lthe results
4) Examine results again

Testing can't generally p
But can increase quality

ting done?

nfiguration
outcome
d against the input and record

nst the expected outcome

prove absence of bugs
and confidence

sqrt ex

public double sqpublic double sq

throws: IllegalArgumen
returns: approximation t

what are some values orwhat are some values or
worth probing?

x < 0 (exception thrown)(p)
around x = 0 (boundary c
perfect squares (sqrt(x) ap q (q ()
x<sqrt(x) and x>sqrt(x) –
Specific tests: say x = -1,

xample

qrt(double x)qrt(double x)

ntException if x<0
to square root of x
ranges of x that might beranges of x that might be

 or x ≥ 0 (returns normally)≥ (y)
condition)
an integer), non-perfect squaresg) p q
– that's x<1 and x>1 (and x=1)
, 0, 0.5, 1, 4

What’s So Hard

"just try it and see if it works.
// requires: 1 <= x,y

// effects: computes

int proc1(int x, int

Exhaustive testing would requ
Sounds totally impractical – an

Key problem: choosing test suKey problem: choosing test su
Small enough to finish quickly
Large enough to validate the prLarge enough to validate the pr

About Testing?

.."
y,z <= 1000

 some f(x,y,z)

y, int z)

uire 1 billion runs!
nd this is a trivially small problem

uite (set of partitions of inputs)uite (set of partitions of inputs)

rogramrogram

Approach: Partitio

Ideal test suite:
Identify sets with same beha
Try one input from each set

Two problems
1 Notion of the same beha i1. Notion of the same behavi

Naive approach: executio
Better approach: revealinBetter approach: revealin

2. Discovering the sets requig q
Use heuristics to approxi

on the Input Space

vior

ior is s btleior is subtle
on equivalence
ng subdomainsng subdomains

ires perfect knowledgep g
imate cheaply

Naive Approach: Exe

// t < 0// returns: x < 0
// otherwise
int abs(int x) {int abs(int x) {

if (x < 0) return -
else return x

}

All x < 0 are execution equivalen
program takes same sequenc

All x >= 0 are execution equival

Suggests that {-3, 3}, for examp

ecution Equivalence

> t => returns –x
e => returns x

-x;
x;

nt:
ce of steps for any x < 0

lent

le, is a good test suite

Why Execution Equiv

Consider the following bug
// t < 0// returns: x < 0
// otherwise
int abs(int x) {int abs(int x) {

if (x < -2) return
l telse return

}

T tiTwo executions:
x < ‐2 x >= ‐2

Three behaviors:

{-3, 3} does not reveal the

Three behaviors:
x < ‐2 (OK) x = ‐2 or

{ 3, 3} does not reveal the

valence Doesn't Work

ggy code:
> t=> returns –x

=> returns x

n -x;
n x;

error!
‐1 (bad) x >= 0 (OK)

error!

Heuristic: Revea

A subdomain is a subsetA subdomain is a subset
Say that a subdomain is

if itherror if either:
Every input in that subdo
No input in that subdom

When testing for error, nWhen testing for error, n
from a given subdomain

If subdomains cover entIf subdomains cover ent
guaranteed to detect the

Trick is to guess these reTrick is to guess these re

aling Subdomains

t of possible inputst of possible inputs
revealing for a particular

omain triggers the error, or
ain triggers the error
need test only one inputneed test only one input
n
ire input space then we areire input space, then we are
error if it is present
evealing subdomainsevealing subdomains

Example
For buggy abs,what ar

int abs(int x) {
if (2) tif (x < -2) retur
else retur

}}

What are good tests?
{−1} {−2} {−2, −1} {−3, −

{−2, −1}

re revealing subdomains?

rn -x;
rn x;

−2, −1}

Heuristics for Des

A good heuristic gives:A good heuristic gives:
few subdomains
∀ errors e in some class
high probability that som

Different heuristics targDifferent heuristics targ
In practice, combine mu

signing Test Suites

of errors E,
me subdomain is revealing for e

get different classes of errorsget different classes of errors
ultiple heuristics

Black Box Tes
Heuristic: Explore alternate

Procedure an interface is a bProcedure an interface is a b
Example

int max(int a, in
// effects: a
//// a
// a

3 paths, so 3 test cases:
(4 3) > 4 (i i(4, 3) => 4 (i.e. any inp
(3, 4) => 4 (i.e. any inp
(3 3) > 3 (i i(3, 3) => 3 (i.e. any inp

sting
e paths through specification
black box internals hiddenblack box, internals hidden

nt b)
> b => returns a
< b > t b< b => returns b
= b => returns a

t i th bd i > b)put in the subdomain a > b)
put in the subdomain a < b)

t i th bd i b)put in the subdomain a = b)

Black Box Test

Process not influenced byProcess not influenced by
Assumptions embodied in c

Robust with respect to cha
Test data need not be changg

Allows for independent tes
Testers need not be familiarTesters need not be familiar

ting: Advantages

component being testedcomponent being tested
code not propagated to test data.
anges in implementation
ged when code is changedg g
sters
r with coder with code

More Compl

Write test cases based on p

int find(int[] a, int
// h ll// returns: the smalle
// that a[i]
// throws: Missing if

Two obvious tests:
([4, 5, 6], 5) => 1([4, 5, 6], 5) 1
([4, 5, 6], 7) => throw
Have I captured all the patHave I captured all the pat

Must hunt for multiple cas

lex Example

paths through the specification

value) throws Missing
i hest i such

== value
f value not in a

Missing
ths?ths?

([4, 5, 5], 5) => 1

ses in effects or requires

Heuristic: Bou

Create tests at the edgesCreate tests at the edges
Why do this?

off-by-one bugs
forget to handle empty cg p y
overflow errors in arithm
aliasingaliasing

Small subdomains at the
subdomains have a highsubdomains have a high
these common errors
Also, you might have m

ndary Testing

s of subdomainss of subdomains

container
metic

e edges of the “main”
h probability of revealingh probability of revealing

misdrawn the boundaries

Boundary Tes
To define boundary, mu
One approach:One approach:

Identify basic operations
T i t dj t iTwo points are adjacent i
A point is isolated if can

l li f iExample: list of integers
Basic operations: create,
Adjacent points: <[2,3],[
Isolated point: [] (can’t a

Point is on a boundary if
There exists an adjacentThere exists an adjacent
Point is isolated

sting
st define adjacent points

 on input points
if b i tiif one basic operation away
’t apply a basic operation
s
append, remove
2,3,3]>, <[2,3],[2]>

apply remove integer)
f either
point in different subdomainpoint in different subdomain

Other Bounda

ArithmeticArithmetic
Smallest/largest values
Zero

Objects
NullNull
Circular
S bj t d tSame object passed to m

ry Cases

lti l t (li i)multiple arguments (aliasing)

Boundary Cases: A

public int abs(int x)p ()

// returns: |x|

Tests for abs
what are some values or ranges of

x < 0 (flips sign) or x ≥ 0 (returns
d 0 (b d ditiaround x = 0 (boundary condition

Specific tests: say x = -1, 0, 1
How about…
int x = -2147483648; //
System.out.println(x<0);
System.out.println(Math.y p

From Javadoc for Math.abs:
Note that if the argument is equalNote that if the argument is equal
most negative representable int va
negative

Arithmetic Overflow

f x that might be worth probing?
s unchanged)

)n)

this is Integer.MIN_VALUE
; // true
.abs(x)<0); // also true!

to the value of Integer MIN VALUE theto the value of Integer.MIN_VALUE, the
alue, the result is that same value, which is

Boundary Cases: D
<E> void appendList(List<E>

// modifies: src, dest// ,
// effects: removes al
// appends th
// the end of

while (src.size()>0) {
E elt = src.remove(s
dest add(elt)dest.add(elt)

}
}

What happens if src and
This is aliasing – often fThis is aliasing often f
Watch out for shared ref

Duplicates & Aliases
src, List<E> dest) {

ll elements of src and
hem in reverse order to
f dest

src.size()-1);

d dest refer to the same thing?
forgottenforgotten
ferences in inputs

Glass-box
Goal:

Ensure test suite coversEnsure test suite covers
Measure quality of test s

Assumption:
high coveragehigh coverage
(no errors in test suite ou

few mistakes in thew s a es

Focus: features not desc
Control-flow details
Performance optimizatiop
Alternate algorithms for

x Testing

(executes) all of the program(executes) all of the program
suite with % coverage

utput
e program)e p og a)

cribed by specificationy p

ons
different cases

Glass-box

There are some subdomains t
boolean[] primeTable = new

boolean isPrime(int x)

if (x>CACHE_SIZE) {

for (int i=2; i

if (x%i==0)if (x%i==0)

}

return true;

} else {

return primeTab

}

}

Important transition around x

Motivation

that black-box testing won't give:g g
w boolean[CACHE_SIZE];

{

{

i<x/2; i++) {

return false; return false;

ble[x];

x = CACHE_SIZE

Glass Box Test

Insight into test casesInsight into test cases
Which are likely to yield

Finds an important class
Consider CACHE_SIZE_

Need to check numbers
CACHE SIZE-1 CACHECACHE_SIZE-1, CACHE_

If CACHE_SIZE is muta
different CACHE SIZEsdifferent CACHE_SIZEs

Disadvantages? Test
bugs

ting: Advantages

d new information
s of boundaries
E in isPrime example

on each side of CACHE_SIZE
SIZE CACHE SIZE+1_SIZE, CACHE_SIZE+1

able, we may need to test with

ts may have same
s as implementation

Glass-box P

What is full coverage?What is full coverage?
static int min (int a,

int r = a;
if (a<=b) {

r=a;
}
return r;return r;

}

Any test with a<=b wouAny test with a<=b wou
instruction, but miss the

Statement coverage is no
Many alternatives: Decis
coverage, or Path-compl

Pragmatics

, int b) {

uld execute everyuld execute every
e bug
ot enough
sion coverage, or Loop
lete coverage.

Varieties of co
Definition of all of the pr

What needs to be coveredWhat needs to be covered
Options:

Statement coverageStatement coverage
Decision coverage
Loop coverage
Condition/Decision covera
Path-complete coverage

100% coverage not alway

100% may be unattaina
High cost to approach t

overage
rogram
d?d?

increasingincreasing
number of
Cases

age (more or
less)

ys reasonable target

able (dead code)
the limit

Pragmatics: Reg

Whenever you find andWhenever you find and
Store input that elicited t
Store correct output
Put into test suite

Why is this a good idea?
Helps to populate test suHelps to populate test su
Protects against reversio
A bl iArguably is an easy erro
once, why not again?)

gression Testing

fix a bugfix a bug
that bug

?
uite with good testsuite with good tests
ons that reintroduce bug

t k (h d t l tor to make (happened at least

Rules of

First rule of testing: Do it earlg
Best to catch bugs soon, before
Automate the process if you canp y
Regression testing will save tim

Second rule of testing: Be systg y
If you randomly thrash, bugs w
Writing tests is a good way to ug g y

Think about revealing domains an
If the spec is confusing write m

S b b tSpec can be buggy too
Incorrect, incomplete, ambiguous

When you find a bug write aWhen you find a bug write a

f Testing

ly and do it ofteny f
e they have a chance to hide.
n

me.
tematic

will hide in the corner until you're gone
understand the specp
nd boundary cases
more tests

s, and missing corner cases
a test for it first and then fix ita test for it first and then fix it

Summ
Testing matters

You need to convince otYou need to convince ot
Catch problems earlier

Bugs become obscure beBugs become obscure be
Don't confuse volume w

Can lose relevant cases iCan lose relevant cases i
Look for revealing subd

Choose test data to coveChoose test data to cove
Specification (black box
Code (glass box testing)Code (glass box testing)

Testing can't generally p
But can increase qualityBut can increase quality

mary

thers that module worksthers that module works

eyond the unit they occur ineyond the unit they occur in
with quality of test data
in mass of irrelevant onesin mass of irrelevant ones
omains
erer
x testing)

prove absence of bugs
and confidenceand confidence

