
public interface Points2D {

 public double x();

 public double y();

}

public interface Points3D

 extends Points2D {

 public double z();

}

• Points3D is a Java subtype of Points2D
• Under some conditions, Points3D is also a true subtype of Points2D
• Subtyping is defined only with respect to specifications – not

implementations
• Informally, we often talk about whether an implementation of a

specification satisfies the subtyping relationship
• In Java, this usually means interfaces and sometimes means

abstract base classes
• In Java, extends is used to define subtypes and subclasses

B is a subtype of A means that a B can
always be substituted for an A

• Any property guaranteed by
supertype must be guaranteed
by subtype (true subtyping)

• The subtype is permitted to
strengthen and add properties

• Anything provable about an A
is provable about a B

• If an instance of subtype is
treated purely as supertype –
only supertype methods and
fields queried – then result
should be consistent with an
object of the supertype being
manipulated

• A Points3D can always be treated as a Points2D

• Points3D adds a property – the z-coordinate

• Invariants over Points2D define the semantics of the type
and hold over Points3D – the following invariants on
Points3D consider only the components taken from
Points2D (that is, treating the subtype purely as its
supertype)

Points2D(,).x() = 

Points2D(,).y() = 

Points3D(,,).x() = 

Points3D(,,).y() = 

• The semantics of Points3D can arbitrarily define
semantics of added properties

Points3D(,,).z() = 

would be the likely expectation

• But the following, albeit weird, would not compromise the
subtyping relationship

Points3D(,,).z() = ++

Java subtypes ≠ true subtypes

public class CartesianTwoDPoints

 implements Points2D {

 double xcoord,ycoord;

 public CartesianTwoDPoints(double a, double b){

 xcoord = a;

 ycoord = b;

 }

 @Override

 public double x() {

 return xcoord;

 }

 @Override

 public double y() {

 return ycoord;

 }

}

public class CartesianThreeDPoints

 implements Points3D {

 double xcoord,ycoord,zcoord;

 public CartesianTwoDPoints(double a, double b, double c){

 xcoord = a; ycoord = b; zcoord = c;

 }

 @Override x() and y() like in CartesianTwoDPoints

 @Override

 public double z() {

 return zcoord;

 }

}

• These implementations satisfy the true subtyping relationship
• ex: CartesianThreeDPoints(,,).y() = 

• Why no subclassing in this example?

Java subtypes ≠ true subtypes
public class CartesianTwoDPoints

 implements Points2D {

 double xcoord,ycoord;

 public CartesianTwoDPoints(double a, double b){

 xcoord = a;

 ycoord = b;

 }

 @Override

 public double x() {

 return xcoord;

 }

 @Override

 public double y() {

 return ycoord;

 }

}

public class CartesianThreeDPoints

 implements Points3D {

 double xcoord,ycoord,zcoord;

 public CartesianThreeDPoints(double a, double b, double

c){

 xcoord = a; ycoord = b; zcoord = c;

 }

 @Override x() like in CartesianTwoDPoints

 @Override

 public double y() {

 return xcoord;

 }

 @Override

 public double z() {

 return zcoord;

 }

}

CartesianThreeDPoints(,,).y() ≠ 

Here, CartesianThreeDPoints

is a Java subtype of Points2D
but does not satisfy the true
subtyping relationship

Two questions in class

• What if Points2D defined a distance method (return the distance
between two points)?
– Points3D could redefine the distance method as long as all points in

the plane have the same distance as they would if considered as
Points2D.

• What if there was a printPoint method in Points2D that
printed (say) “x=? y=?” where the question marks show the actual
values?
– The question becomes one of semantics – if the format is constrained

by the specification of Points2D, then it would have to be adhered to
(perhaps by only printing the x and y coordinates); if it wasn’t
constrained, but said something like, “It prints the value of the
coordinates,” then Points3D would have more choice

Subtyping vs. subclassing
public class PolarTwoDPoints implements Points2D {

 double r, theta;

 public PolarTwoDPoints(double a, double b) {

 r = Math.sqrt(a*a+b*b);

 theta = 2*Math.atan(b/(a+r));

 }

 @Override

 public double x() {

 return r*Math.cos(theta);

 }

 @Override

 public double y() {

 return r*Math.sin(theta);

 }

}

public class AltThreeDPoints extends PolarTwoDPoints

 implements Points3D {

 double z;

 public AltThreeDPoints(double a, double b, double c){

 super(a, b);

 z = c;

 }

 @Override

 public double z() {

 return z;

 }

}

• AltThreeDPoints is a subclass of PolarTwoDPoints and a Java subtype of Points2D
• For this implementation, AltThreeDPoints is also a true subtype of Points2D – the invariants for Points2D

are maintained
• This is true even though an AltThreeDPoints is stored as (r,theta,z)

What if…

• …we wanted to restrict Points2D to be only in
the first quadrant? x ≥ 0  y ≥ 0

• What semantics do we want? Here are two
possibilities

– If the client tries to construct a Points2D outside
the first quadrant, throw an exception

– Take the absolute value of x and of y before
constructing the point

exception

public class FirstQuadrant2DPoints implements Points2D {

 double xcoord, ycoord;

 public FirstQuadrant2DPoints(double a,double b) throws NotFirstQuadrant {

 if ((a <= 0) || (b <= 0)) {

 throw new NotFirstQuadrant();

 }

 xcoord = a;

 ycoord = b;

 }

 @Override

 public double x() {

 return xcoord;

 }

 @Override

 public double y() {

 return ycoord;

 }

}

• Note there is no subtyping here (as yet)
• We are changing the semantics of Points2D (without changing the

interface directly)
( ≥ 0   ≥ 0) 

 Points2D(,).x() =   Points2D(,).y() = 

( ≥ 0   ≥ 0)  throw NotFirstQuadrant exception

abs

public class FirstQuadrant2DPoints implements Points2D {

 double xcoord, ycoord;

 public FirstQuadrant2DPoints(double a,double b) {

 xcoord = Math.abs(a);

 ycoord = Math.abs(b);

 }

 @Override

 public double x() {

 return xcoord;

 }

 @Override

 public double y() {

 return ycoord;

 }

}

• Notice, there is no subtyping here (as yet)
• We are still changing the semantics of Points2D (without changing

the interface directly)
Points2D(,).x() = ||

Points2D(,).y() = ||

exception

public class FirstQuadrant3DPoints implements Points3D {

 double xcoord, ycoord, zcoord;

 public FirstQuadrant3DPoints(double a, double b, double c) throws NotFirstQuadrant {

 if ((a <= 0) || (b <= 0)) {

 throw new NotFirstQuadrant();

 }

 xcoord = a;

 ycoord = b;

 zcoord = c;

 }

 @Override

 public double z() {

 return zcoord;

 }

}

• Now FirstQuadrant3DPoints and FirstQuadrant2D points satisfy
the Points3D is a subtype of Points2D relationship

• It could also choose to throw a NotFirstQuadrant exception if z was
negative without compromising the subtype relationship

abs

public class FirstQuadrant3DPoints implements Points3D {

 double xcoord, ycoord, zcoord;

 public FirstQuadrant3DPoints(double a,double b) {

 xcoord = Math.abs(a);

 ycoord = Math.abs(b);

 zcoord = c;

 }

 @Override

 public double z() {

 return zcoord;

 }

}

• Would this FirstQuadrant3DPoints and FirstQuadrant2DPoints
satisfy the Points3D is a subtype of Points2D relationship?

