CSE331 midterm review

Autumn 2010



Exam structure

* 50 minutes, in class — Matt will proctor

* Open note, open book, closed neighbor,
closed anything electronic (computers, web-
enabled phones, etc.)

* An easier-to-read answer makes for a happier-
to-give-partial-credit grader



More structure

 Three 15-minute equally weighted exam
sections

A. Specifications and subtyping

B. Abstract data types, representation invariants
and abstraction functions

C. Miscellaneous (mutability, testing, equality,
subclassing, ...)



A. Specifications and subtyping

* Role of specifications — difference from
implementation

e Stronger vs. weaker specifications
e Java subtyping vs. true subtyping



A. Role of Specifications

* vs. code
 Two hats — implementer and client

— What are the different objectives when wearing
each hat?



A. Stronger and weaker

 There will be at least two questions about
comparing specifications in terms of strength
or weakness

— At least one will be abstract — that is, a question of
logic and mathematics without concern for
software per se

— At least one will concern this issue in the context
of software (that is, may include throws clauses,
etc.)



A. Key issues

Stronger and weaker specifications

» Astronger specification is

— hardertosatisfy (implement) becauseit promises more—
that is, its effects clause is harder to satisfy and/or there
are fewer objects in modifies clause—but

— ensier to use (more guarantees, more predictable) by the
client—thatis, the requires clauseis easierto satisfy

* A weaker specification is

— eansier to satisfy (easiertoimplement and more
implementations satisfy it) because it promises less —that
is, the effects clause is easierto satisfy and/orthere are
more objects in modifies clause—but

— hardertouse (makes fewer guarantees) because it asks
more of the client—thatis, the requires clauseis harderto
satisfy




A. Subtyping

e At least one question focused on whether a
specific Java subtype is or is not a true
subtype, and why



B. Abstract data types...

* Abstract data types, representation invariants
and abstraction functions

* ADTs provide a set of operations and
semantics over those operations

— Ex: A stack ADT that provides new, push, pop and
top operations — and some way of understanding
“stackness” (perhaps descriptions such as if push
succeeds then top returns the last pushed
element)



B. Implementations

* |[tis common to implement ADTs in
programming languages, most often OO

programming languages
 What is the relationship between the ADT and
the implementation?




B. Abstraction function

The AF gives meaning to the representation of
data in the implementation

This is a figure from

The AF maps from
the representation to Ve
the abstract values
and may be
many-to-one

Why not abstract to | . .cvers
representation? View

AF formal or informal?



http://www.cs.cornell.edu/courses/cs3110/2009fa/lectures/lec08.html

B. Representation invariant

* These are constraints on the concrete
representation alone — only if this invariant is
true is there a guarantee that the AF makes
sense when applied to the representation

 The Rl is guaranteed to hold by an

implementation only at method entry and exit
— why not always?



B. AF and Rl relationship

e Again from

* Puts together G ooy LTI
what we | ;
discussed = o

i |
Implementer view >

® Th e “ a | I (concrete) ,IE.DT operation impl
rep type values satisfying rep invariant
values of

All values of rep type

rep type” includes
all representations that
satisfy and do not satisfy the Rl


http://www.cs.cornell.edu/courses/cs3110/2009fa/lectures/lec08.html

B. Representation exposure

* Representation exposure occurs when a client
of an ADT can learn unintended properties
about an implementation — this can easily
preclude or complicate making later changes
to the implementation

* Aliasing, mutability, etc. are common bases for
representation exposure — they can be used
carefully and properly, but often aren’t



B. Questions

 There will be a set of (most likely) linked

guestions about a specific ADT and reasonable
AF and Rl for it

 There may be a linked rep exposure question,
but if not there will be a standalone one —
most likely, “Does the following have any
representation exposure? If so, what?”



C. Miscellaneous

* Mutability, testing, equality, subclassing, ...

* Example topics/questions (all of which would be
more focused) — can’t fit all these in, though!

— Describe a situation where mutability is a good choice
even with the risk of rep exposure

— In what way can we consider testing as a way of
verifying whether an implementation satisfies a
specification?

— What are the strengths of black- vs. white-box testing?



C. continued

* Example topics/questions (all of which would
be more focused)

— Some semi-tricky question about equality and the
equivalence relationship

— Subtyping vs. subclassing — sharing behavior vs.
sharing code



