Type systems

CSE 331
Spring 2010

Static and dynamic typing

* Static typing

— Compiler guarantees that some errors cannot happen
* The set of errors depends on the language
e Other errors are still possible!

— Examples: C, C++, Objective C, C#, Java, Haskell, ML
* Dynamic typing

— The run-time system keeps track of types, and throws
errors

— Examples: Lisp, Scheme, Perl, PHP, Python, Ruby,
JavaScript

* No type system
— Example: Assembly

Why we ¥ static typing

Documentation
Correctness/reliability
Refactoring

Speed

Why we ¥ dynamlc typing

(= Why we @ static typing)

More concise code
— Type inference is possible

No false positive warnings

Every static type system rejects some correct programs

@NonNull String lineSep
= System.getProperty("line.separator");

More flexible code
— Add fields at run time / 7‘.\{
— Change class of an object '

Ability to run tests at any time " "
— Feedback is important for quality code/ 9
— Programmer knows whether

static or dynamic feedback is best DuCtlle

Nullness subtyping relationship

* Which type hierarchy is best?

@NonNull Date

|

@Nullable Date

@Nullable Date

T

@NonNull Date

@7?? Date

N

@Nullable Date @NonNull Date

* A subtype has more values

* A subtype has more operations

* A subtype is substitutable

* A subtype preserves supertype properties

Mutability subtyping relationship

* Which type hierarchy is best?

@Ilmmutable Date

|

@Mutable Date

@Mutable Date

|

@ReadOnly Date

N

@Immutable Date

@Ilmmutable Date @Mutable Date

@Read@abje: no one can do mutation

@ Mucabledognytatieran do mutation
— No guarantee about mutation from elsewhere

Flow sensitivity

« Which calls are legal?

Object name; @Nullable String name;
name = new Object(); name = null;

name . toLowerCase () ; name . toLowerCase () ;
name = “HELLO”; name = “HELLO”;

name . toLowerCase () ; name . toLowerCase () ;
name = new Obiject(); name = null;

name . toLowerCase () ; name . toLowerCase () ;

Flow sensitivity: name and legality

* Control flow determines the type
if (x==null) {
. // treat as nullable
} else {
. // treat as non-null

}
 What changes to the type are legal?

String name; @NonNull String name;
name = new Object(); |[[name = null;
. .. [//treat name as object || . .. //treat name as nullable

Not these; only change to a subtype

Flow sensitivity and type inference

When must you write a type?

If the default is the top of the type hierarchy,
you don’t need to annotate local variables

@Nullable String name;
name = “hello”;
. .. //treat name as non-null

@Nullable String name;
name = otherNullable;
. .. //treat name as nullable

The receiver is just another parameter

How many arguments does Object.equals take?

class MyClass {
@Override
public boolean equals (Object other) { .. }

}
Two! Their names are this and other

Neither one is mutated by the method ﬁnnota]fi;r:_on
. Annotation on ype o is
public boolean type of other L//

equals (dReadOnly Object other) (@ReadOnly {..}

