print(@Readonly Object x) {
List<@NonNull String> Ist;

.
4

Detecting and preventing bugs
with pluggable type-checking

CSE 331

Joint work with Mahmood Ali

http://types.cs.washington.edu/jsr308
http://types.cs.washington.edu/checker-framework

Motivation

\ o e o e e 1008 114 g es rwrn e | [Ty S| S E

Java’s type checking is too weak

* Type checking prevents many bugs
int i = “hello”; // type error

* Type checking doesn’t prevent enough bugs

System.console () .readLine() ;
= NullPointerException

Collections.emptylList () .add (“One”) ;
= UnsupportedOperationException

Some errors are silent

Date date = new Date(0) ;
myMap .put (date, "“Java epoch”) ;
date.setYear (70) ;

myMap .put (date, “Linux epoch”);
—> Corrupted map

dbStatement.executeQuery (userInput) ;
—> SQL injection attack

Initialization, data formatting, equality tests, ...

Problem: Your code has bugs

 Who discovers the problems?

‘ I'm Feeling Lucky ‘
— If you are very lucky, testing discovers (some of) them

— If you are unlucky, your customer discovers them

— If you are very unlucky, hackers discover them

— If you are smart, the compiler discovers them

* |t's better to be smart than lucky

Solution: Pluggable type systems

e Design a type system to solve a specific problem
* Write type qualifiers in code (or, use type inference)

@Immutable Date date

new Date (0) ;

date.setTime (70) ; // compile-time error

* Type checker warns about violations (bugs)

% javac -processor NullnessChecker MyFile. java

MyFile.java:149: dereference of possibly-null reference bb2

allVars = bb2.vars;
A

Outline

Type qualifiers
Pluggable type checkers
Writing your own checker

Conclusion

Type qualifiers

* Java 7: annotations on types

@Untainted String query;
List<@NonNull String> strings;

myGraph = (@Immutable Graph) tmpGraph;
class UnmodifiableList<T>
implements (@Readonly List<(@Readonly T> {}

 Backward-compatible: compile with any Java

compiler
List</*@NonNull*/ String> strings;

Benefits of type qualifiers

Find bugs in programs
Guarantee the absence of errors

Improve documentation
Improve code structure & maintainability

Aid compilers, optimizers, and analysis tools
Reduce number of assertions and run-time checks

Possible negatives:
— Must write the types (or use type inference)
— False positives are possible (can be suppressed)

Outline

Type qualifiers

Pluggable type checkers
Writing your own checker
Conclusion

10

What bugs can you find & prevent?

 Null dereferences
e Mutation and side-effects
* Concurrency: locking

* Security: encryption,
tainting

* Aliasing
e Equality tests

e Strings: localization,
regular expression syntax

» Typestate (e.g., open/closed files)
* You can write your own checker!

The annotation you write:

@NonNull
@Immutable
@GuardedBy

@Encrypted
@Untainted

@Linear
@Interned

@Localized
@Regex

@State

Using a checker

* Runin IDE or on command line
* Works as a compiler plug-in (annotation processor)
e Uses familiar error messages

Lonsole console = System.consolel)

o J- console.printf("Password: ");l File. java
char[] password = console.readPassword();

| Problems &3 @ Javadoc |_{_-JJ Declaration

0 errors, 1 warning, 0 others
£ pescription Al
| ¥ Warnings (1 item)
1, dereference of possibly-null reference console 1
12

Nullness and mutation demo

* Detect errors
e Guarantee the absence of errors
* Verify the correctness of optimizations

Checkers are effective

e Scales to > 200,000 LOC

e Each checker found errors in each code base it
ran on

— Verified by a human and fixed

Comparison: other Nullness tools

Null pointer errors| False | Annotations
Found | Missed |Wwarnings | written
Checker
Framework 8 0 4 35
FindBugs 0 8 1 0
Jlint 0 8 8 0
PMD 0 8 0 0

* Checking the Lookup program for file system searching (4KLOC)
Distributed with Daikon (~200KLOC verified by our checker)

* False warnings are suppressed via an annotation or assertion

e Also, errors in Google Collections (>20,000 tests, FindBugs)

Checkers are featureful

Full type systems: inheritance, overriding, etc.
Generics (type polymorphism)

— Also qualifier polymorphism

Flow-sensitive type qualifier inference

— Infers types for local variables
Qualifier defaults

Warning suppression

Checkers are usable

Integrated with toolchain
— javac, Eclipse, Ant, Maven
Few false positives

Annotations are not too verbose

— @NonNull: 1 per 75 lines
* with program-wide defaults, 1 per 2000 lines

— @Interned: 124 annotations in 220KLOC revealed 11 bugs
— Possible to annotate part of program

— Fewer annotations in new code

Inference tools: nullness, mutability

— Adds annotations throughout your program

What a checker guarantees

 The program satisfies the type property. There are:
— no bugs (of particular varieties)
— no wrong annotations

 Caveat 1: only for code that is checked
— Native methods
— Reflection
— Code compiled without the pluggable type checker

— Suppressed warnings
* Indicates what code a human should analyze

— Checking part of a program is still useful
* Caveat 2: The checker itself might contain an error

Annotating libraries

* Each checker comes with JDK annotations
— For signatures, not bodies
— Finds errors in clients, but not in the library itself

* Inference tools for annotating new libraries

Outline

Type qualifiers
Pluggable type checkers
Writing your own checker

Conclusion

20

SQL injection attack

Server code bug: SQL query constructed using
unfiltered user input

query = “SELECT * FROM users ”
+ “WHERE name=‘'" + userInput + “';”;

User inputs: a’ or ‘1'=‘1
Result:

query — SELECT * FROM users
WHERE name=‘a’ or '1’'='1’;

Query returns information about all users

Taint checker

@TypeQualifier

@SubtypeOf (Unqualified.class)
@ImplicitFor (trees = {STRING LITERAL})
public @interface Untainted { }

To use it:

1. Write QUntainted in your program
List getPosts (@Untainted String category) {..}

2. Compile your program

jJavac -processor BasicChecker -Aquals=Untainted
MyProgram. java

Taint checker demo

* Detect SQL injection vulnerability
e Guarantee absence of such vulnerabilities

Defining a type system

@TypeQualifier
public @interface NonNull { }

24

Defining a type system

1. Qualifier hierarchy —rules for assignment
2. Type introduction — types for expressions
3. Type rules — checker-specific errors
@TypeQualifier

public @interface NonNull { }

25

Defining a type system

What assignments are legal:

1. Qualifier hierarchy @Nullable
. . Object
2. Type introduction /,a b\
3. Type rules @NonNull @Nullable
Object Date
@TypeQualifier ENMNL{J
@SubtypeOf (Nullable.class) Date

public @interface NonNull { }

26

Defining a type system

Gives the type of expressions:

1. Qualifier hierarchy new Date ()
. . “hello ” + tN
2. Type introduction Bojle‘;n,mge =nel)
3. Type rules
@TypeQualifier

@SubtypeOf (Nullable.class)
@ImplicitFor (trees={ NEW CLASS,
PLUS,
BOOLEAN LITERAL, ... })

public @interface NonNull { }

27

Defining a type system

Errors for unsafe code:

1. Qualifier hierarchy synchronized (expr) {
2. Type introduction -

7
3. Type rules Warn if expr may be null

void visitSynchronized (SynchronizedTree node) {
ExpressionTree expr = node.getExpression() ;
AnnotatedTypeMirror type = getAnnotatedType (expr) ;
if (! type.hasAnnotation (NONNULL))
checker.report (Result.failure(...), expr);

28

Outline

Type qualifiers

Pluggable type checkers
Writing your own checker
Conclusion

29

Pluggable type-checking

Java 7 syntax for type annotations
— Write in comments during transition to Java 7

Checker Framework for creating type checkers
— Featureful, effective, easy to use, scalable

Prevent bugs at compile time
Create custom type-checkers

Learn more, or download the Checker Framework:
http://types.cs.washington.edu/jsr308

(or, web search for “Checker Framework” or “JSR 308”)

30

