
Equality

CSE 331

Autumn 2010

Object equality

• A simple idea – we have intuitions about equality:
– Two objects are equal if they have the same value
– Two objects are equal if they are indistinguishable

• A subtle idea – our intuitions are not complete:
– Is equality temporary or forever?
– How does equality behave in the presence of

inheritance?
– Is equality of collections related to equality of

elements?
• What about self-containment?

– How can we make equality an efficient operation?

UW CSE331 Autumn 2010 2

Reference equality

• a == b

• True if a and b point to
the same object

• Strongest definition of equality

• Weaker definitions of equality can be useful

UW CSE331 Autumn 2010 3

a b

Object.equals method

• The Object.equals method is very simple

public class Object {

 public boolean equals(Object o) {

 return this == o;

 }

}

• Yet its specification is much more elaborate.
• Why?

UW CSE331 Autumn 2010 4

Equals specification
public boolean equals(Object obj)

Indicates whether some other object is "equal to" this one. The equals method implements an
equivalence relation:
• It is reflexive: for any reference value x, x.equals(x) should return true.
• It is symmetric: for any reference values x and y, x.equals(y) should return

true if and only if y.equals(x) returns true.
• It is transitive: for any reference values x, y, and z, if x.equals(y) returns true

and y.equals(z) returns true, then x.equals(z) should return true.
• It is consistent: for any reference values x and y, multiple invocations of

x.equals(y) consistently return true or consistently return false, provided no
information used in equals comparisons on the object is modified.

• For any non-null reference value x, x.equals(null) should return false.
The equals method for class Object implements the most discriminating possible equivalence

relation on objects; that is, for any reference values x and y, this method returns true if and
only if x and y refer to the same object (x==y has the value true).

Parameters:
obj - the reference object with which to compare.

Returns:
true if this object is the same as the obj argument; false otherwise.

See Also:
Boolean.hashCode(), Hashtable

UW CSE331 Autumn 2010 5

http://java.sun.com/j2se/1.3/docs/api/java/lang/Object.html
http://java.sun.com/j2se/1.3/docs/api/java/lang/Boolean.html
http://java.sun.com/j2se/1.3/docs/api/java/lang/Boolean.html
http://java.sun.com/j2se/1.3/docs/api/java/util/Hashtable.html

The Object contract

• Object class is designed for inheritance

• Its specification will apply to all subtypes – all Java
classes

• So, its specification must be flexible
– Specification for equals cannot later be weakened

– If a.equals(b) were specified to test a==b, then no class
could change this and still be a true subtype of Object

– Instead spec for equals enumerates basic properties that
clients can rely on it to have in subtypes of Object

– a==b is compatible with these properties, but so are other
tests

UW CSE331 Autumn 2010 6

Properties of equals

• Equality is reflexive
– a.equals(a) is true

• Equality is symmetric
– a.equals(b) b.equals(a)

• Equality is transitive
– a.equals(b) and b.equals(c) a.equals(c)

• No object equals null
– a.equals(null) = false

• There are a few other conditions that we’ll ignore for now
• The default implementation (reference equality) works fine

for these properties

UW CSE331 Autumn 2010 7

Beyond reference equality

public class Duration {

 private final int min;

 private final int sec;

 public Duration(int min, int sec) {

 this.min = min; this.sec = sec;

 }

}

Duration d1 = new Duration(10,5);

Duration d2 = new Duration(10,5);

System.out.println(d1.equals(d2)); // False

• But maybe we would like this to be true

UW CSE331 Autumn 2010 8

An incorrect equals method

• Let's try adding an equals method that compares fields

 public boolean equals(Duration d) {

 return d.min == min && d.sec == sec;

 }

 Duration d1 = new Duration(10,5);

 Duration d2 = new Duration(10,5);

 System.out.println(d1.equals(d2)); // True!

• This is reflexive, symmetric, transitive for Duration objects

UW CSE331 Autumn 2010 9

Must override Object.equals

• This was overloading, not overriding

Object d1 = new Duration(10,5);

Object d2 = new Duration(10,5);

System.out.println(d1.equals(d2)); // False!

• Use the @Override annotation
• Overloading: defining a new method with the same

name as an existing method, but with a different type
signature – both are visible

• Overriding: replacing a new from a superclass with one
for the subclass

UW CSE331 Autumn 2010 10

A correct equals method for Duration

@Override // compiler warning if type mismatch

public boolean equals(Object o) {

 if (! (o instanceof Duration))

 return false;

 Duration d = (Duration) o;

 return d.min == min && d.sec == sec;

}

Object d1 = new Duration(10,5);

Object d2 = new Duration(10,5);

System.out.println(d1.equals(d2)); // True

UW CSE331 Autumn 2010 11

Equality and inheritance

• Add a nano-second field for fractional seconds

public class NanoDuration extends Duration {

 private final int nano;

 public NanoDuration(int min, int sec, int nano) {

 super(min,sec);

 this.nano = nano;

 }

 // If we inherit equals() from Duration, nano will be ignored

 // and objects with different nanos will be equal.

}

 UW CSE331 Autumn 2010 12

Symmetry bug

• A first attempt at an equals method for NanoDuration

 public boolean equals(Object o) {

 if (! (o instanceof NanoDuration))

 return false;

 NanoDuration nd = (NanoDuration) o;

 return super.equals(nd) && nano == nd.nano;

 }

• This is not symmetric!
Duration d1 = new NanoDuration(5,10,15);

Duration d2 = new Duration(5,10);

System.out.println(d1.equals(d2)); // false
System.out.println(d2.equals(d1)); // true

UW CSE331 Autumn 2010 13

Symmetry fix but…

public boolean equals(Object o) {

 if (! (o instanceof Duration))

 return false;

 // if o is a normal Duration, compare without nano

 if (! (o instanceof NanoDuration))

 return super.equals(o);

 NanoDuration nd = (NanoDuration) o;

 return super.equals(nd) && nano == nd.nano;

}

• However, this is not transitive!

UW CSE331 Autumn 2010 14

Transitivity bug

Duration d1 = new NanoDuration(5,10,15);

Duration d2 = new Duration(5,10);

Duration d3 = new NanoDuration(5,10,30);

System.out.println(d1.equals(d2)); // true

System.out.println(d2.equals(d3)); // true

System.out.println(d1.equals(d3)); // false!

• What is the solution?

– Can check exact class in Duration, rather than just use instanceof
– But then can't do any minor subclassing; for example to make an

ArithmeticDuration class that offers no new fields, just a few new
operators

UW CSE331 Autumn 2010 15

checking exact class

• Duration can avoid comparing against an instance of a subtype

public boolean equals(Object o) {

 if (o == null)

 return false;

 if (!o.getClass().equals(getClass()))

 return false;

 Duration d = (Duration) o;

 return d.min == min && d.sec == sec;

}

• But now every subtype must override equals
– Even if it wants the identical definition
– Hard to compare subtypes to one another

UW CSE331 Autumn 2010 16

Another solution: avoid inheritance

• Can use composition:

public class NanoDuration {

 private final Duration duration;

 private final int nano;

 // ...

}

• NanoDurations and Durations are unrelated

– There is no presumption that NanoDurations and Durations may be
equal

– Can’t use NanoDurations where Durations are expected

UW CSE331 Autumn 2010 17

Date and Timestamp in Java

• public class Timestamp extends Date
– “A thin wrapper around java.util.Date that ... adds the

ability to hold the SQL TIMESTAMP nanos value and
provides formatting and parsing operations ...”

• Caveat 1
– “The Timestamp.equals(Object) method is not

symmetric with respect to the
java.util.Date.equals(Object) method.”

• Caveat 2
– “Also, the hashcode method uses the underlying

java.util.Date implementation and therefore does not
include nanos in its computation.”

UW CSE331 Autumn 2010 18

Date and Timestamp in Java

• Caveat 3
– “Due to the differences between the Timestamp class

and the java.util.Date class mentioned above, it is
recommended that code not view Timestamp values
generically as an instance of java.util.Date. The
inheritance relationship between Timestamp and
java.util.Date really denotes implementation
inheritance, and not type inheritance.”

• Translation:

– “Timestamps are not Dates. Ignore that extends
Dates bit in the class declaration.”

UW CSE331 Autumn 2010 19

• public boolean equals(Timestamp ts)

“Tests to see if this Timestamp object is equal to the

given Timestamp object.”

• public boolean equals(Object ts)

“Tests to see if this Timestamp object is equal to the

given object. This version of the method equals has

been added to fix the incorrect signature of

Timestamp.equals(Timestamp) and to preserve

backward compatibility with existing class files. Note:

This method is not symmetric with respect to the

equals(Object) method in the base class.”

Timestamp: overloading error

UW CSE331 Autumn 2010 20

A special case: uninstantiable types

• No equality problem if superclass cannot be
instantiated!

– For example, suppose Duration were abstract

– Then no troublesome comparisons can arise between
Duration and NanoDuration instances

• This may be why this problem is not very intuitive

– In real life, “superclasses” can't be instantiated

– We have specific apples and oranges, never
unspecialized Fruit

 UW CSE331 Autumn 2010 21

Efficiency of equality

• Equality tests can be slow
– E.g. testing if two text documents are equal
– Or testing for equality between millions of objects

• Useful to quickly prefilter
– E.g. are documents same length?
– If not, they are not equal
– If so, then they are worth testing for equality

• Hash codes are efficient prefilters for equality
– Do objects have same hash code?
– If not, they are not equal
– If so, then they are worth testing for equality

UW CSE331 Autumn 2010 22

specification for Object.hashCode

• public int hashCode()

– “Returns a hash code value for the object. This
method is supported for the benefit of hashtables
such as those provided by java.util.HashMap.”

• The general contract of hashCode is:

– Self-consistent:
• o.hashCode() == o.hashCode()

• ...so long as o doesn’t change between the calls

– Consistent with equality:
• a.equals(b) a.hashCode()==b.hashCode()

UW CSE331 Autumn 2010 23

Many possible hashCode
implementations

public class Duration {

 public int hashCode() {

 return 1; // always safe, but makes hash tables
 } // inefficient (no prefiltering)

 public int hashCode() {

 return min; // safe, but inefficient for Durations
 } // that differ in sec field only

 public int hashCode() {

 return min+sec; // safe, and changes in any field
 }

}

UW CSE331 Autumn 2010 24

Consistency of equals and hashCode

• Suppose we change the spec for Duration.equals

// Return true if o and this represent the same number of seconds
 public boolean equals(Object o) {

 if (! (o instanceof Duration))

 return false;

 Duration d = (Duration) o;

 return 60*min+sec == 60*d.min+d.sec;

 }

• We must update hashCode, or we will get inconsistent behavior. This works

 public int hashCode() {

 return 60*min+sec;

 }

UW CSE331 Autumn 2010 25

Equality, mutation, and time

• If two objects are equal now, will they always be equal?
– In mathematics, the answer is “yes”
– In Java, the answer is “you choose”
– The Object contract doesn't specify this (why not?)

• For immutable objects
– Abstract value never changes
– Equality is automatically forever

• For mutable objects, equality can either:
– Compare abstract values (field-by-field comparison)
– Or be eternal
– Can't do both! Since abstract value can change.

UW CSE331 Autumn 2010 26

examples

• StringBuffer is mutable, and takes the “eternal” approach

StringBuffer s1 = new StringBuffer("hello");

StringBuffer s2 = new StringBuffer("hello");

System.out.println(s1.equals(s1)); // true
System.out.println(s1.equals(s2)); // false

• This is reference (==) equality, which is the only way to guarantee

eternal equality for mutable objects. Compare to

Date d1 = new Date(0); // Jan 1, 1970 00:00:00 GMT
Date d2 = new Date(0);

System.out.println(d1.equals(d2)); // true
d2.setTime(1); // a millisecond later
System.out.println(d1.equals(d2)); // false

UW CSE331 Autumn 2010 27

Behavioral and observatonal
equivalence

• Two objects are “behaviorally equivalent” if:
– There is no sequence of operations that can distinguish

them
– This is “eternal” equality
– Two Strings with same content are behaviorally equivalent,

two Dates or StringBuffers with same content are not

• Two objects are “observationally equivalent” if:
– There is no sequence of observer operations that can

distinguish them
• Excluding mutators
• Excluding == (permitting == would require reference equality)

– Two Strings, Dates, or StringBuffers with same content are
observationally equivalent

UW CSE331 Autumn 2010 28

Equality and mutation

• Date class implements observational equality
• Can therefore violate rep invariant of a Set container by mutating

after insertion

 Set<Date> s = new HashSet<Date>();

 Date d1 = new Date(0);

 Date d2 = new Date(1000);

 s.add(d1);

 s.add(d2);

 d2.setTime(0);

 for (Date d : s) { // prints two identical Dates
 System.out.println(d);

 }

UW CSE331 Autumn 2010 29

Pitfalls of observational equivalence

• Equality for set elements would ideally be
behavioral

• Java makes no such guarantee (or requirement)

• So have to make do with caveats in specs:
– “Note: Great care must be exercised if mutable

objects are used as set elements. The behavior of a
set is not specified if the value of an object is changed
in a manner that affects equals comparisons while the
object is an element in the set.”

• Same problem applies to keys in maps

UW CSE331 Autumn 2010 30

Mutation and hash codes

• Sets also assume hash codes don't change
• Mutation and observational equivalence can break this assumption too

List<String> friends =

 new LinkedList<String>(Arrays.asList("yoda","zaphod"));

List<String> enemies = ...; // any other list
Set<List<String>> h = new HashSet<List<String>>();

h.add(friends);

h.add(enemies);

friends.add("weatherwax");

System.out.println(h.contains(friends)); // probably false
for (List<String> lst : h) {

 System.out.println(lst.equals(friends));

} // one “true” will be printed - inconsistent!

UW CSE331 Autumn 2010 31

More container wrinkles: self-
containment

• equals and hashCode methods on containers are recursive,
e.g. hashCode for List<E>
 int code = 1;

 for (Object o : list) {

 code = 31*code + (o==null ? 0 :

o.hashCode());

 }

• This causes an infinite loop
List<Object> lst = new LinkedList<Object>();

lst.add(lst);

int code = lst.hashCode();

UW CSE331 Autumn 2010 32

Summary:
All equals are not equal!

– reference equality

– behavioral equality

– observational equality

UW CSE331 Autumn 2010 33

Summary: Java specifics

• Mixes different types of equality

– Objects different from collections

• Extendable specifications

– Objects, subtypes can be less strict

• Only enforced by the specification

• Speed hack

– hashCode

UW CSE331 Autumn 2010 34

Summary: object-oriented Issues

• Inheritance
– Subtypes inheriting equal can break the spec. Many

subtle issues.

– Forcing all subtypes to implement is cumbersome

• Mutable objects
– Much more difficult to deal with

– Observational equality

– Can break reference equality in eollections

• Abstract classes
– If only the subclass is instantiated, we are ok…

UW CSE331 Autumn 2010 35

Summary: software engineering

• Equality is such a simple concept
• But…

– Programs are used in unintended ways
– Programs are extended in unintended ways

• Many unintended consequences
• In equality, these are addressed using a

combination of:
– Flexibility
– Carefully written specifications
– Manual enforcement of the specifications

• perhaps by reasoning and/or testing

UW CSE331 Autumn 2010 36

