
Representation invariants
and abstraction functions

CSE 331

Autum 2010

UW CSE331 Autumn 2010 1

ADTs and specifications

• An ADT is more than just a data structure
– data structure + a set of conventions

• Specification: only in terms of the abstraction
– Never mentions the representation

• Representation invariant: Object → boolean
– Indicates whether a data structure is well-formed
– Defines the set of valid values of the data structure

• Abstraction function: Object → abstract value
– What the data structure means (as an abstract value)
– How the data structure is to be interpreted
– How do you compute the inverse,

abstract value → Object?

UW CSE331 Autumn 2010 2

A data abstraction is defined by a
specification

• A collection of procedural abstractions
– Not a collection of procedures

• Together, these procedural abstractions provide
– A set of values
– All the ways of directly using that set of values:

creating, manipulating, observing

• Creators and producers make new values
• Mutators change the value (but don’t affect ==)
• Observers allow one to tell values apart, which is

the key to understanding

UW CSE331 Autumn 2010 3

Implementation of an ADT
is provided by a class

• To implement a data abstraction

– Select the representation of instances, the rep

– Implement operations in terms of that rep

• Choose a representation so that

– It is possible (preferably easy) to implement
operations

– The most frequently used operations are efficient

• But which will these be?

• Abstraction allows changes to rep late in the game

 UW CSE331 Autumn 2010 4

CharSet Abstraction

// Overview: A CharSet is a finite mutable set of Characters

// effects: creates a fresh, empty CharSet

public CharSet ()

// modifies: this

// effects: thispost = thispre U {c}

public void insert (Character c);

// modifies: this

// effects: thispost = thispre - {c}

public void delete (Character c);

// returns: (c  this)

public boolean member (Character c);

// returns: cardinality of this

public int size ();

UW CSE331 Autumn 2010 5

A CharSet implementation.
Where is the error?

class CharSet {

 private List<Character> elts

 = new ArrayList<Character>();

 public void insert(Character c) {

 elts.add(c);

 }

 public void delete(Character c) {

 elts.remove(c);

 }

 public boolean member(Character c) {

 return elts.contains(c);

 }

 public int size() {

 return elts.size();

 }

}

CharSet s = new CharSet();

Character a

 = new Character(„a‟);

s.insert(a);

s.insert(a);

s.delete(a);

if (s.member(a))

 // print “wrong”;

else

 // print “right”;

UW CSE331 Autumn 2010 6

Where Is the Error?

• The answer to this question tells you what
needs to be fixed

• Perhaps delete is wrong
– It should remove all occurrences

• Perhaps insert is wrong
– It should not insert a character that is already

there

• How can we know?
– The representation invariant tells us

UW CSE331 Autumn 2010 7

The representation invariant

• States data structure well-formedness
• Captures information that must be shared across implementations

of multiple operations
• Write it this way

class CharSet {
 // Rep invariant: elts has no nulls and no
 duplicates
 private List<Character> elts;
 …

• Or, if you are the pedantic sort

 indices i of elts . elts.elementAt(i) ≠ null
 indices i, j of elts . i ≠ j 
  elts.elementAt(i).equals(elts.elementAt(j))

UW CSE331 Autumn 2010 8

Now, we can locate the error

// Rep invariant:

// elts has no nulls and no duplicates

public void insert(Character c) {

 elts.add(c);

}

public void delete(Character c) {

 elts.remove(c);

}

UW CSE331 Autumn 2010 9

Another rep invariant example

class Account {

private int balance;

// history of all transactions

private List<Transaction> transactions;

…

}

// real-world constraints:
balance ≥ 0
balance = Σi transactions.get(i).amount
// implementation-related constraints:
transactions ≠ null
no nulls in transactions

UW CSE331 Autumn 2010 10

Listing the elements of a CharSet

• Consider adding the following method to CharSet
// returns: a List containing the members of this

public List<Character> getElts ();

• Consider this implementation
// Rep invariant: elts has no nulls & no duplicates

public List<Character> getElts() { return elts; }

• Does the implementation of getElts preserve
the rep invariant?

UW CSE331 Autumn 2010 11

Well, sort of:
Representation exposure

• Consider the client code

CharSet s = new CharSet();

Character a = new Character(„a‟);

s.insert(a);

s.getElts().add(a);

s.delete(a);

if (s.member(a)) …

• Representation exposure is external access to the rep
• Representation exposure is almost always evil – why?
• If you do it, document why and how

– And feel guilty about it!

UW CSE331 Autumn 2010 12

Ways to avoid rep exposure
• Make a copy

List<Character> getElts() {

 return new ArrayList<Character>(elts);

 // or: return (ArrayList<Character>) elts.clone();

}

Mutating a copy doesn’t affect the original

Don’t forget to make a copy on the way in!

• Make an immutable copy
List<Character> getElts() {

 return Collections.unmodifiableList<Character>(elts);

}

Client cannot mutate

Still need to make a copy on the way in

UW CSE331 Autumn 2010 13

Checking rep invariants

• Should code check that the rep invariant
holds?

– Yes, if it’s inexpensive

– Yes, for debugging (even when it’s expensive)

– It’s quite hard to justify turning the checking off

– Some private methods need not check (Why?)

UW CSE331 Autumn 2010 14

Checking the rep invariant

/** Verify that elts contains no duplicates. */

private void checkRep() {

 for (int i = 0; i < elts.size(); i++) {

 assert elts.indexOf(elts.elementAt(i)) == i);

 }

}

• An alternative implementation

– repOK() returns a boolean

– callers of repOK check its return value

UW CSE331 Autumn 2010 15

Check on entry and on exit

• As a rule of thumb… but why?

public void delete(Character c) {

 checkRep();

 elts.remove(c);

 // Is this guaranteed to get called?

 // See handouts for a less error-prone way

to check at exit.

 checkRep();

}

UW CSE331 Autumn 2010 16

Practice defensive programming

• Assume that you will make mistakes
• Write and incorporate code designed to catch them

– On entry
• Check rep invariant
• Check preconditions (requires clause)

– On exit
• Check rep invariant
• Check postconditions

• Checking the rep invariant helps you discover errors
• Reasoning about the rep invariant helps you avoid errors

– Or prove that they do not exist!
– We will discuss such reasoning later on

UW CSE331 Autumn 2010 17

The rep invariant constrains structure,
not meaning

• New implementation of insert that preserves the rep invariant
public void insert(Character c) {

 Character cc = new Character(encrypt(c));

 if (!elts.contains(cc))

 elts.addElement(cc);

}

public boolean member(Character c) {

 return elts.contains(c);

}

• The program is still wrong
– Clients observe incorrect behavior
– Where is the error?
– We must consider the meaning
– The abstraction function helps us

CharSet s = new CharSet();

Character a = new

Character(„a‟));

s.insert(a);

if (s.member(a))

 // print “right”;

else

 // print “wrong”;

UW CSE331 Autumn 2010 18

Abstraction function:
rep → abstract value

• The abstraction function maps the concrete representation to the abstract value it
represents
– AF: Object → abstract value
– AF(CharSet this) = { c | c is contained in this.elts }

“set of Characters contained in this.elts”
Typically not executable

• The abstraction function lets us reason about behavior from the client perspective
• Our real goal is to satisfy the specification of insert

– // modifies: this

– // effects: thispost = thispre U {c}

– public void insert (Character c);

• Once again we can identify the problem
– Applying the abstraction function to the result of the call to insert yields

AF(elts) U {encrypt(‘a’)}
– What if we used this abstraction function?

• AF(this) = { c | encrypt(c) is contained in this.elts }
• AF(this) = { decrypt(c) | c is contained in this.elts }

UW CSE331 Autumn 2010 19

Placing the blame

• Our real goal is to satisfy the specification of insert:
// modifies: this

// effects: thispost = thispre U {c}

public void insert (Character c);

• The AF tells us what the rep means (and lets us place the blame)

AF(CharSet this) = { c | c is contained in this.elts }
• Consider a call to insert:
 On entry, the meaning is AF(thispre) ≈ eltspre
 On exit, the meaning is AF(thispost) = AF(thispre) U {encrypt(‘a’)}

• What if we used this abstraction function?

AF(this) = { c | encrypt(c) is contained in this.elts }
 = { decrypt(c) | c is contained in this.elts }

UW CSE331 Autumn 2010 20

Benevolent side effects

• Different implementation of member:
boolean member(Character c1) {

 int i = elts.indexOf(c1);

 if (i == -1)

 return false;

 // move-to-front optimization

 Character c2 = elts.elementAt(0);

 elts.set(0, c1);

 elts.set(i, c2);

 return true;

}

• Move-to-front speeds up repeated membership tests
• Mutates rep, but does not change abstract value
• AF maps both reps to the same abstract value

r r’

a

op



AF AF

UW CSE331 Autumn 2010 21

The abstraction function is a function

• Q: Why do we map concrete to abstract rather
than vice versa?

• It’s not a function in the other direction.
– Ex: lists [a,b] and [b,a] each represent the set {a, b}

• It’s not as useful in the other direction.

– Can construct objects via the provided operators

UW CSE331 Autumn 2010 22

Writing an abstraction function

• The domain: all representations that satisfy the
rep invariant

• The range: can be tricky to denote

– For mathematical entities like sets: easy

– For more complex abstractions: give them fields

• AF defines the value of each “specification field”

• The overview section of the specification should
provide a way of writing abstract values

– A printed representation is valuable for debugging

UW CSE331 Autumn 2010 23

Summary

• Rep invariant
– Which concrete values represent abstract values

• Abstraction function
– Which abstract value each concrete value represents

• Together, they modularize the implementation
– Can examine operators one at a time
– Neither one is part of the abstraction (the ADT)

• In practice
– Always write a representation invariant
– Write an abstraction function when you need it

• Write an informal one for most non-trivial classes
• A formal one is harder to write and usually less useful

UW CSE331 Autumn 2010 24

