
Abstract Data Types

CSE 331

Autumn 2010

Outline

• What is an abstract data type (ADT)?

• How to specify an ADT

– immutable

– mutable

• The ADT methodology

UW CSE331 Autumn 2010 2

What is an ADT?

• Recall procedural abstraction

– Abstracts from the details of procedures

– A specification mechanism

• Data abstraction (ADT):

– Abstracts from the details of data representation

– A specification mechanism
+ a way of thinking about programs and designs

UW CSE331 Autumn 2010 3

Why we need Abstract Data Types

• Organizing and manipulating data is pervasive

– Inventing and describing algorithms is rare

• Start your design by designing data structures

– Code to access and manipulate data

• Potential problems with choosing a data structure

– Decisions about data structures are made too early

– Duplication of effort in creating derived data

– Very hard to change key data structures

UW CSE331 Autumn 2010 4

An ADT is a set of operations

• ADT abstracts from the organization to meaning of data

• ADT abstracts from structure to use

• Representation does not matter; this choice is
irrelevant

• Instead, think of a type as a set of operations
– create, base, altitude, bottomAngle, ...

• Force clients (users) to call operations to access data

UW CSE331 Autumn 2010 5

class RightTriangle {

 float base, altitude;

}

class RightTriangle {

 float base, hypot, angle;

}

Are these classes the same or different?

class Point { class Point {
 public float x; public float r;
 public float y; public float theta;
} }

• Different: can't replace one with the other
• Same: both classes implement the concept "2-d point"
• Goal of ADT methodology is to express the sameness

– Clients depend only on the concept "2-d point"

• Good for
– delaying decisions
– fixing bugs
– performance optimizations

UW CSE331 Autumn 2010 6

7

2-d point as an ADT
class Point {

 // A 2-d point exists somewhere in the plane, ...

 public float x();

 public float y();

 public float r();

 public float theta();

 // ... can be created, ...

 public Point(); // new point at (0,0)

 // ... can be moved, ...

 public void translate(float delta_x,

 float delta_y);

 public void scaleAndRotate(float delta_r,

 float delta_theta);

}

UW CSE331 Autumn 2010

8

Point

x

y

r

theta

translate

scale_rot

rest of

program

abstraction

barrier

Abstract data type = objects + operations

• The implementation is hidden

• The only operations on objects of the type are
those provided by the abstraction

clients implementation

UW CSE331 Autumn 2010

9

How to Specify an ADT

immutable

class TypeName {

 1. overview

 2. abstract fields

 3. creators

 4. observers

 5. producers

}

mutable

class TypeName {

 1. overview

 2. abstract fields

 3. creators

 4. observers

 5. mutators

}

Abstract fields (a.k.a. specification fields): later

UW CSE331 Autumn 2010

10

Primitive Data Types Are ADTs

int is an immutable ADT
creators: 0, 1, 2, ...

producers: + - * / ...

observer: Integer.toString(int)

• It is possible to define int with a single
creator
– Why would we want to do that?

UW CSE331 Autumn 2010

11

Poly, an immutable datatype: overview

• Overview:

– Always state whether mutable or immutable

– Define abstract model for use in specs of operations

• Difficult and vital!

• Appeal to math if appropriate

• Give an example (reuse it in operation definitions)

• In all ADTs, state in specs is abstract: refers to specification fields, not
implementation

UW CSE331 Autumn 2010

/**

 * A Poly is an immutable polynomial with

 * integer coefficients. A typical Poly is

 * c0 + c1x + c2x
2 + ...

 **/

class Poly {

12

Poly: creators

• New object, not part of prestate: in effects, not
modifies

• Overloading: distinguish procedures of same name
by parameters

– Example: two Poly constructors

UW CSE331 Autumn 2010

 // effects: makes a new Poly = 0

 public Poly()

 // effects: makes a new Poly = cxn

 // throws: NegExponent when n < 0

 public Poly(int c, int n)

13

Poly: observers
// returns: the degree of this,

// i.e., the largest exponent with a

// non-zero coefficient.

// Returns 0 if this = 0.

public int degree()

// returns: the coefficient of

// the term of this whose exponent is d

public int coeff(int d)

UW CSE331 Autumn 2010

14

Notes on observers
• Used to obtain information about objects of the type

• Return values of other types

• Never modify the abstract value

• Specification uses the abstraction from the overview

• this is the particular Poly object being worked on
– that is, the target of the invocation

UW CSE331 Autumn 2010

 Poly x = new Poly(4, 3);

 int c = x.coeff(3);

 System.out.println(c); // prints 4

15

Poly: producers

• Operations on a type that create other objects of
the type

• Common in immutable types, e.g.,
java.lang.String:
– String substring(int offset, int len)

• No side effects

UW CSE331 Autumn 2010

// returns: this + q (as a Poly)

public Poly add(Poly q)

// returns: the Poly = this * q

public Poly mul(Poly q)

// returns: -this

public Poly negate()

16

IntSet, a mutable datatype:
overview and creators

// Overview: An IntSet is a mutable, unbounded

// set of integers. A typical IntSet is

// { x1, ..., xn }.

class IntSet {

 // effects: makes a new IntSet = {}

 public IntSet()

UW CSE331 Autumn 2010

17

IntSet: observers
// returns: true if x this

// else returns false

public boolean contains(int x)

// returns: the cardinality of this

public int size()

// returns: some element of this

// throws: EmptyException when size()==0

public int choose()

UW CSE331 Autumn 2010

18

IntSet: mutators
// modifies: this

// effects: thispost = thispre {x}

public void add(int x) // insert an element

// modifies: this

// effects: thispost = thispre - {x}

public void remove(int x)

• Mutators are operations that modify an element of the type

• Rarely modify anything other than this

• Must list this in modifies clause (if appropriate)

• Typically have no return value

• Mutable ADTs may have producers too, but that is less common

UW CSE331 Autumn 2010

19

Representation exposure

• Is Line mutable or immutable?

• It depends on the implementation!

– If Line creates an internal copy: immutable

– If Line stores a reference to p1,p2: mutable

• Lesson: storing a mutable object in an immutable

collection can expose the representation

Point p1 = new Point();

Point p2 = new Point();

Line line = new Line(p1,p2);

p1.translate(5, 10); // move point p1

UW CSE331 Autumn 2010

ADTs and Java language features

• Java classes – how to use them
– Make operations in the ADT public
– Make other ops and fields of the class private
– Clients can only access ADT operations

• Java interfaces
– Clients only see the ADT, not the implementation
– Multiple implementations have no code in common
– Cannot include creators (constructors) or fields

• Both classes and interfaces are sometimes
appropriate
– Write and rely upon careful specifications

UW CSE331 Autumn 2010 20

Preview: subtyping

• A stronger specification can be substituted for a
weaker
– Applies to types as well as to individual methods

• Java subtypes are not necessarily true subtypes

• A Java subtype is indicated via extends or
implements

– Java enforces signatures (types), but not behavior

• A true subtype is indicated by a stronger specification
– Also called a “behavioral subtype”

– Every fact that can be proved about supertype objects can
also be proved about subtype objects

UW CSE331 Autumn 2010 21

22

Subtyping example

class A {

 // returns: 0

 int zero(int i) { return 0; }

}

// Java subtype of A, but not true subtype

class B extends A {

 // returns: negative of argument

 int zero(int i) { return –i; } // overriding method

}

// True subtype of A, but not Java subtype

class C {

 // returns: 0

 int zero(int i) { return i – i; }

}

UW CSE331 Autumn 2010

