
Specifications

CSE 331

Autumn 2010

The challenge of scaling software

• Small programs tend
to be simple and
malleable
– easy to write, easy to

change

• Big programs tend to
be complex and
inflexible
– hard to write, hard to

change

• Why?
– Because interactions

become increasingly
unmanageable

Package P

Class A

Method x Method y

Class B

Method z

UW CSE331 Autumn 2010 2

More classes,
more methods,
more calls, more
generics, more
imports, more
inherits, more
libraries, more
static and
private and
public, …

A discipline of
modularity

• We aim at simpler and more malleable programs by viewing a
program in two ways
– How to build it: the implementer's view
– How to use it: the client's view

• When you are wearing one “hat,” make as few assumptions about
what someone wearing the other “hat” will decide
– When you are constructing a client, make as few assumptions as

possible about how others parts you depend upon are implemented
– When you are constructing an implementation, make as few

assumptions as possible about clients that may use the
implementation

• This separation is formalized through the idea of a specification

UW CSE331 Autumn 2010 3

 A specification is a contract

• A set of requirements agreed to by the user and the
manufacturer of the product
– It describes their expectations of each other

• Two-way isolation improves clarity of expectations and
discourages implicit expectations
– Isolate client from implementation details

• At least for the moment, you are not responsible for the
implementation

– Isolate implementation from how the part is used
• At least for the moment, you are not choosing what the clients do and

how they do it

• Facilitates change
– Making the specification more stable allows the client and the

implementation to change more independently

UW CSE331 Autumn 2010 4

An aside:
Design Rules The Power of Modularity

“…. [Baldwin and Clark] develop a
powerful theory of design and
industrial evolution. They argue that
the [computing] industry has
experienced previously unimaginable
levels of innovation and growth
because it embraced the concept
of modularity, building complex
products from smaller subsystems that
can be designed independently yet
function together as a whole.
Modularity freed designers to
experiment with different approaches,
as long as they obeyed the
established design rules. …”
 –amazon.com

UW CSE331 Autumn 2010 5

Isn’t a (Java) interface sufficient?

• The interface defines the boundary between the
implementers and the clients

 public interface List<E> {
 public int get(int);
 public void set(int, E);
 public void add(E);
 public void add(int, E);
 …
 public static boolean sub(List<T>, List<T>);
 }

• It provides the syntax but nothing on the behavior
and effects

• What do you think that add(E) does and
sub(List<T>, List<T>) does? Why?

UW CSE331 Autumn 2010 6

Why not just read the code?

 boolean sub(List<?> src, List<?> part) {

 int part_index = 0;

 for (Object o : src) {

 if (o.equals(part.get(part_index))) {

 part_index++;

 if (part_index == part.size()) {

 return true;

 }

 } else {

 part_index = 0;

 }

 }

 return false;

 }

• Code gives more detail
than the client needs

• Understanding or even
reading every line of
code is a burden

– Suppose you had to
read source code of Java
libraries to use them?

• Client cares only about
what the code does,
not how it does it

UW CSE331 Autumn 2010 7

Code is vague

• A piece of code may be unambiguous and vague

– Reading code lets you determine how it will execute, but
it may not let you distinguish essential from incidental
details

• This is key as the code is changed

– Client needs to know what they can rely on
over time
• What properties might be changed by later optimization,

improved algorithms, or bug fixes, etc.?

– Implementer needs to know what features the client
depends on, and which can be changed

UW CSE331 Autumn 2010 8

http://www.waterencyclopedia.com/images/wsci_01_img0048.jpg

Comments: essential but insufficient

• Most comments convey only an informal,
general idea of what that the code does

// This method checks if “part” appears as a

// subsequence in “src”

 boolean sub(List<?> src, List<?> part) {
...

 }

• Ambiguity remains
– Ex: what if src and part are both empty lists?

UW CSE331 Autumn 2010 9

Towards specifications

• Properties of a specification
– The client agrees to rely only on information in the

description in their use of the part
– The implementer of the part promises to support

everything in the description, but otherwise is
perfectly at liberty

• However, much code lacks a specification
– Clients often work out what a method/class does in

ambiguous cases by simply running it, then depending
on the results

– This leads to bugs and to programs with unclear
dependencies, reducing simplicity and flexibility

UW CSE331 Autumn 2010 10

Recall the sublist example
T boolean sub(List<T> src, List<T> part) {

 int part_index = 0;

 for (T elt : src) {

 if (elt.equals(part.get(part_index))) {

 part_index++;

 if (part_index == part.size()) {

 return true;

 }

 } else {

 part_index = 0;

 }

 }

 return false;

}

UW CSE331 Autumn 2010 11

a more careful description of sub()

// Check whether “part” appears as a

// subsequence in “src”.

// * src and part cannot be null

// * If src is empty list, always returns false.

// * Results may be unexpected if partial matches

// can happen right before a real match; e.g.,

// list (1,2,1,3) will not be identified as a
// sub sequence of (1,2,1,2,1,3).

// This method scans the “src” list from beginning

// to end, building up a match for “part”, and

// resetting that match every time that...

UW CSE331 Autumn 2010 12

Caveats

More
detailed

description

OR

It’s better to simplify
than to describe complexity

• Complicated description suggests poor design
• Rewrite sub() to be more sensible and easier to describe.

Then a good description would be:

// returns true iff sequences A, B exist such that

 // src = A : part : B
 // where “:” is sequence concatenation
 boolean sub(List<?> src, List<?> part)

• This is a decent specification

– Mathematical flavor is not necessary, but can help avoid
ambiguity

UW CSE331 Autumn 2010 13

sneaky fringe benefit of specs #1

• The discipline of writing specifications changes
the incentive structure of coding
– rewards code that is easy to describe and understand
– punishes code that is hard to describe and understand

(even if it is shorter or easier to write)

• If you find yourself writing complicated
specifications, it is an incentive to redesign
– sub() code that does exactly the right thing may be

slightly slower then the hack that assumes no partial
matches before true matches – but cost of forcing
client to understand the details is too high

UW CSE331 Autumn 2010 14

examples of specifications

• Javadoc

– Sometimes can be daunting; get used to using it

• Javadoc convention for writing specifications

– method prototype

– text description of method

– param – description of what gets passed in

– returns – description of what gets returned

– throws – list of exceptions that may occur

UW CSE331 Autumn 2010 15

example: Javadoc for String.contains

UW CSE331 Autumn 2010 16

public boolean contains(CharSequence s)

Returns true if and only if this string contains the specified sequence
of char values.

Parameters:

s- the sequence to search for

Returns:

true if this string contains s, false otherwise

Throws:

NullPointerException

Since:

1.5

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/CharSequence.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/NullPointerException.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/NullPointerException.html

CSE 331 specifications

• The precondition: constraints that hold before the
method is called (if not, all bets are off – remember,
False True)
– requires: spells out any obligations on client

• The postcondition: constraints that hold after the
method is called (if the precondition held)
– modifies: lists objects that may be affected by method; any

object not listed is guaranteed to be untouched
– throws: lists possible exceptions (Javadoc uses this too)
– effects: gives guarantees on the final state of modified

objects
– returns: describes return value (Javadoc uses this too)

UW CSE331 Autumn 2010 17

Example 1

static int test(List<T> lst, T oldelt, T newelt)

 requires lst, oldelt and newelt are non null. oldelt occurs in lst

 modifies lst

 effects change the first occurrence of oldelt in lst to newelt
 & makes no other changes to lst

 returns the position of the element on lst that was oldelt and now newelt

static int test(List<T> lst, T oldelt, T newelt) {
 int i = 0;
 for (T curr : lst) {
 if (curr == oldelt) {
 lst.set(newelt, i);
 return i;
 }

i = i + 1;
 }
 return -1;
}

UW CSE331 Autumn 2010 18

Example 2
static List<Integer> listAdd(List<Integer> lst1, List<Integer> lst2)

 requires lst1 and lst2 are not null. lst1 and lst2 are the same size

 modifies none

 effects none

 returns a list of same size where the ith element is the sum of the ith

 elements of lst1 and lst2

static List<Integer> listAdd(List<Integer> lst1,

 List<Integer> lst2) {

 List<Integer> res = new ArrayList<Integer>();

 for(int i = 0; i < lst1.size(); i++) {

 res.add(lst1.get(i) + lst2.get(i));

 }

 return res;

}

UW CSE331 Autumn 2010 19

Example 3
static void listAdd2(List<Integer> lst1, List<Integer> lst2)

 requires lst1 and lst2 are not null. lst1 and lst2 are the same size

 modifies lst1

 effects ith element of lst2 is added to the ith element of lst1

 returns none

static void listAdd2(List<Integer> lst1,

 List<Integer> lst2) {

 for(int i = 0; i < lst1.size(); i++) {

 lst1.set(i, lst1.get(i) + lst2.get(i));

 }

 }

UW CSE331 Autumn 2010 20

example: java.util.Arrays.binarySearch

binarySearch
public static int binarySearch(int[] a,int key)

Searches the specified array of ints for the specified value using the binary
search algorithm. The array must be sorted (as by the sort method,
above) prior to making this call. If it is not sorted, the results are
undefined. If the array contains multiple elements with the specified
value, there is no guarantee which one will be found.

Parameters:

a- the array to be searched.

key- the value to be searched for.

Returns:

index of the search key, if it is contained in the list; otherwise,
(-(insertion point) - 1). (long description...)

UW CSE331 Autumn 2010 22

Improved binarySearch specification

public static int binarySearch(int[] a,int key)

requires: a is sorted in ascending order

returns:
– some i such that a[i] = key if such an i exists,
– otherwise -1

(Returning (-(insertion point) - 1) is very ugly, and an

invitation to bugs and confusion; please read full specification
and think about why the designers did this, and what the
alternatives are. We'll return to the topic of exceptions and
special values in a later lecture.)

UW CSE331 Autumn 2010 23

Should requires clause be checked?

• If the client calls a method without meeting the precondition,
the code is free to do anything, including pass corrupted data
back
– It is better, however, to fail-fast: to provide an immediate error, rather

than simply letting mysterious bad stuff happen

• Preconditions are more reasonable to use in “helper”
methods/classes than in public libraries – friendlier to just deal
with all possible input
– Why does binarySearch impose a precondition rather than simply

failing if list is not sorted?

• Rule of Thumb: Check if cheap to do so
– Ex: list has to be non-null check

– Ex: list has to be sorted skip

UW CSE331 Autumn 2010 24

Comparing specifications

• Occasionally, we need to compare different
versions of a specification
– We talk about “weaker” and “stronger” specifications

• Intuitively, we weaken a specification when we
change it to give greater freedom to the
implementer
– If specification S1 is weaker than S2, then for any

implementation I
• I satisfies S2 => I satisfies S1

• but the opposite implication does not necessarily hold

UW CSE331 Autumn 2010 25

Example 1

 int find(int[] a, int value) {

 for (int i=0; i<a.length; i++) {

 if (a[i]==value) return i;

 }

 return -1;

 }

• specification A
– requires: value occurs in a

– returns: i such that a[i] = value

• specification B
– requires: value occurs in a

– returns: smallest i such that a[i] = value
UW CSE331 Autumn 2010 26

Example 2

 int find(int[] a, int value) {
 for (int i=0; i<a.length; i++) {
 if (a[i]==value) return i;
 }
 return -1;
 }

• specification A
– requires: value occurs in a
– returns: i such that a[i] = value

• specification C
– returns: i such that a[i]=value, or -1 if value is not

in a

UW CSE331 Autumn 2010 27

Stronger and weaker specifications

• A stronger specification is
– harder to satisfy (implement) because it promises more –

that is, its effects clause is harder to satisfy and/or there
are fewer objects in modifies clause – but

– easier to use (more guarantees, more predictable) by the
client – that is, the requires clause is easier to satisfy

• A weaker specification is
– easier to satisfy (easier to implement and more

implementations satisfy it) because it promises less – that
is, the effects clause is easier to satisfy and/or there are
more objects in modifies clause – but

– harder to use (makes fewer guarantees) because it asks
more of the client – that is, the requires clause is harder to
satisfy

UW CSE331 Autumn 2010 28

Choosing specifications

• There are different specifications for the same
implementation (and vice versa)
– Specification says more than method does
– Declares which properties are essential – the method

itself leaves that ambiguous
– Clients know what they can rely on, implementers

know what they are committed to

• Which is better: a strong or a weak specification?
– It depends!
– Criteria: simple, promotes reuse and modularity,

efficient

UW CSE331 Autumn 2010 29

Sneaky fringe benefit of specs #2

• Specification means that client doesn't need
to look at implementation

– So code may not even exist yet!

• Write specifications first, make sure system
will fit together, and then assign separate
implementers to different modules

– Allows teamwork and parallel development

– Also helps with testing, as we'll see shortly

UW CSE331 Autumn 2010 30

Whoa, that was fast!

• Reread these slides

• Read the assignments (see the calendar on
the web)

• Do PS0 – and think about these issues in a
focused context

• Come to office hours

• You’ll get there, for sure

UW CSE331 Autumn 2010 31

