Data Compression: Huffman Coding

10.1 in Weiss (p.389)

Why compress files?

• For long term storage (disc space is limited)
• For transferring files over the internet (bigger files take longer)
• A smaller file more likely to fit in memory/cache

What is a file?

• C++ program code
• Executable program
• Email - text
• HTML document
• Pictures (lossy); JPEG
• Video (lossy); MPEG
• Audio (lossy); MP3

Data Compression

Encoder

Y

Decoder

X'

original

x

compressed

y

decompressed

x'

Lossless compression X = X'
Lossy compression X != X'
Compression Ratio \(\frac{|X|}{|Y|} \)

Where \(|X|\) is the # of bits in X.
Lossy Compression

- Some data is lost, but not too much.

Standards:
- JPEG (Joint Photographic Experts Group) – stills
- MPEG (Motion Picture Experts Group) – Audio and video
- MP3 (MPEG-1, Layer 3)

Lossless Compression

- No data is lost.

Standards:
- Gzip, Unix compress, zip, GIF, Morse code
- Examples:
 - Run-length Encoding (RLE)
 - Huffman Coding

RLE

- Idea: Compactly represent long ‘runs’ of the same character
- “aaarrrr!” as ‘a’x3 ‘r’x5 then ‘!’

Another idea: Use fewer bits per character

ASCII = fixed 8 bits per character

Example: “hello there”
- 11 characters * 8 bits = 88 bits

Can we encode this message using fewer bits?

- Replace all ‘runs’ of the same character by 2 characters: the 1) character and 2) the length
 - ‘bee’ becomes ‘b’,1,”e”,2
- When is this good?
- When is this really bad?
Another idea: Use fewer bits per character

ASCII = fixed 8 bits per character

Example: “hello there”
- 11 characters * 8 bits = 88 bits

Can we encode this message using fewer bits?
- We could look JUST at the message
 - there are only 6 possible characters + one space = 7 things;
 only need 3 bits
- Encode: aahddcaa = could do as 16 bits (each character = 2
 bits each)
- Huffman can do as 14 bits

Huffman Coding

- Uses *frequencies* of symbols in a string to build a **prefix code**.
- **Prefix Code** – no code in our encoding is a prefix of another code.

<table>
<thead>
<tr>
<th>Letter</th>
<th>code</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>100</td>
</tr>
<tr>
<td>c</td>
<td>101</td>
</tr>
<tr>
<td>d</td>
<td>11</td>
</tr>
</tbody>
</table>

Decoding a Prefix Code

Loop
start at root of tree
loop
 if bit read = 1 then go right
 else, go left
until node is a leaf
Report character found!
Until end of the message

Decode: 11100010100110
Decoding: 11100010100110

<table>
<thead>
<tr>
<th>Letter</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>100</td>
</tr>
<tr>
<td>c</td>
<td>101</td>
</tr>
<tr>
<td>d</td>
<td>11</td>
</tr>
</tbody>
</table>

Huffman Trees

Cost of a Huffman Tree containing n symbols

\[C(T) = p_1 r_1 + p_2 r_2 + p_3 r_3 + \ldots + p_n r_n \]

Where:
- \(p_i \) = the probability that a symbol occurs
- \(r_i \) = the length of the path from the root to the node

Example Cost

<table>
<thead>
<tr>
<th>Letter</th>
<th>Frequency</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>.50</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>.125</td>
<td>100</td>
</tr>
<tr>
<td>c</td>
<td>.125</td>
<td>101</td>
</tr>
<tr>
<td>d</td>
<td>.25</td>
<td>11</td>
</tr>
</tbody>
</table>

Cost: 1.75

Constructing a tree

- Determine frequency of each letter/symbol
- Place each as an unconnected leaf node
- Repeatedly merge two nodes with lowest frequency into one node with sum of frequencies
- Huffman Coding is optimal*

Constructing a tree example

- Encode “a java jar”
- 4 a’s, 2 spaces, 2 j’s, 1 v, 1 r; 10 total

a: .4 space: .2 j: .2 v: .1 r: .1

Constructing a tree example

- Encode “a java jar”
- 4 a’s, 2 spaces, 2 j’s, 1 v, 1 r; 10 total

a: .4 space: .2 j: .2 v: .1 r: .1
Constructing a tree example

- Encode “a java jar”
- 4 a’s, 2 spaces, 2 j’s, 1 v, 1 r; 10 total

```
  4
 / \    
 a: .4  j: .2  v: .1  r: .1
```

Cost = .4*1 + .2*2 + .2*3 + .1*1*4 = 2.2
Run-time?

- To decode an encoded message length n: $O(n)$
- To encode message length n, with c possible characters
 - Count frequencies: $O(n)$
 - Build tree: $O(c \log c)$ (with priority queue)
 - Encode: $O(n)$