Graphs
Chapter 9 in Weiss

CSE 326
Data Structures
Ruth Anderson

Today’s Outline

• Announcements
 – Written Homework #6 due NOW
 – Project 3 Code due Mon March 1 by 11pm
 – Project 3 Benchmarking & Written due Thurs March 4 by 11pm

• Today’s Topics:
 – Sorting
 – Graphs

Graph... ADT?

• Not quite an ADT…
 operations not clear

• A formalism for representing relationships between objects

 Graph \(G = (V, E) \)
 – Set of vertices:
 \(V = \{v_1, v_2, ..., v_n\} \)
 – Set of edges:
 \(E = \{e_1, e_2, ..., e_m\} \)
 where each \(e_i \) connects two vertices \((v_{i1}, v_{i2}) \)

Han Leia Luke

Graph Definitions

In **directed** graphs, edges have a specific direction:

In **undirected** graphs, they don’t (edges are two-way):

\(v \) is adjacent to \(u \) if \((u, v) \in E \)

More Definitions:
Simple Paths and Cycles

A **simple path** repeats no vertices (except that the first can be the last):

\(p = \{Seattle, Salt Lake City, San Francisco, Dallas\} \)
\(p = \{Seattle, Salt Lake City, Dallas, San Francisco, Seattle\} \)

A **cycle** is a path that starts and ends at the same node:

\(p = \{Seattle, Salt Lake City, Dallas, San Francisco, Seattle\} \)
\(p = \{Seattle, Salt Lake City, Seattle, San Francisco, Seattle\} \)

A **simple cycle** is a cycle that repeats no vertices except that the first vertex is also the last (in undirected graphs, no edge can be repeated)

Trees as Graphs

• Every tree is a graph!
• Not all graphs are trees!

A graph is a tree if

– There are **no cycles** (directed or undirected)
– There is a **path** from the root to every node
Directed Acyclic Graphs (DAGs)

DAGs are directed graphs with no (directed) cycles.

Aside: If program call-graph is a DAG, then all procedure calls can be in-lined

Graph Representations

0. List of vertices + list of edges
1. 2-D matrix of vertices (marking edges in the cells)
 "adjacency matrix"
2. List of vertices each with a list of adjacent vertices
 "adjacency list"

Things we might want to do:
- iterate over vertices
- iterate over edges
- iterate over vertices adj. to a vertex
- check whether an edge exists

Representation 1: Adjacency Matrix

A $|V| \times |V|$ array in which an element (u, v) is true if and only if there is an edge from u to v

Space requirements:

Runtime:

Representation 2: Adjacency List

A $|V|$-ary list (array) in which each entry stores a list (linked list) of all adjacent vertices

Space requirements:

Runtime:
Good match?

<table>
<thead>
<tr>
<th>List of edges and list of vertices</th>
<th>Adjacency matrix</th>
<th>Adjacency list</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iterate over vertices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iterate over edges</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check if edge exists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iterate over vertices adjacent to a vertex</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Some Applications:
Moving Around Washington

What’s the shortest way to get from Seattle to Pullman?
Edge labels:

What’s the fastest way to get from Seattle to Pullman?
Edge labels:

Some Applications:
Reliability of Communication

If Wenatchee’s phone exchange goes down, can Seattle still talk to Pullman?

Some Applications:
Bus Routes in Downtown Seattle

If we’re at 3rd and Pine, how can we get to 1st and University using Metro?

Application: Topological Sort

Given a directed graph, $G = (V, E)$, output all the vertices in V such that no vertex is output before any other vertex with an edge to it.

Is the output unique?
Valid Topological Sorts:

Topological Sort: Take One

1. Label each vertex with its in-degree (# of inbound edges)
2. While there are vertices remaining:
 a. Choose a vertex v of in-degree zero; output v
 b. Reduce the in-degree of all vertices adjacent to v
 c. Remove v from the list of vertices

Runtime:

Topological Sort: Take Two

1. Label each vertex with its in-degree
2. Initialize a queue Q to contain all in-degree zero vertices
3. While Q not empty
 a. v = Q.dequeue; output v
 b. Reduce the in-degree of all vertices adjacent to v
 c. If new in-degree of any such vertex u is zero
 Q.enqueue(u)

Note: could use a stack, list, set, box, ... instead of a queue

Runtime:

Graph Traversals

- Breadth-first search (and depth-first search) work for arbitrary (directed or undirected) graphs - not just mazes!
 - Must mark visited vertices so you do not go into an infinite loop!
- Either can be used to determine connectivity:
 - Is there a path between two given vertices?
 - Is the graph (weakly) connected?
- Which one:
 - Uses a queue?
 - Uses a stack?
 - Always finds the shortest path (for unweighted graphs)?
Graph Connectivity

Undirected graphs are **connected** if there is a path between any two vertices.

Directed graphs are **strongly connected** if there is a path from any one vertex to any other.

Directed graphs are **weakly connected** if there is a path between any two vertices, ignoring direction.

A **complete** graph has an edge between every pair of vertices.

The Shortest Path Problem

Given a graph \(G \), edge costs \(c_{ij} \) and vertices \(s \) and \(t \) in \(G \), find the shortest path from \(s \) to \(t \).

For a path \(p = v_0 \ldots v_k \)

- **unweighted length** of path \(p = k \) (a.k.a. length)

- **weighted length** of path \(p = \sum_{i=0}^{k-1} c_{vi,vi+1} \) (a.k.a. cost)

Path length equals path cost when ?

Single Source Shortest Paths (SSSP)

Given a graph \(G \), edge costs \(c_{ij} \) and vertex \(s \), find the shortest paths from \(s \) to all vertices in \(G \).

- Is this harder or easier than the previous problem?

All Pairs Shortest Paths (APSP)

Given a graph \(G \) and edge costs \(c_{ij} \) find the shortest paths between all pairs of vertices in \(G \).

- Is this harder or easier than SSSP?

- Could we use SSSP as a subroutine to solve this?

Variations of SSSP

- Weighted vs. unweighted
- Directed vs undirected
- Cyclic vs. acyclic
- Positive weights only vs. negative weights allowed
- Shortest path vs. longest path
- ...

Applications

- Network routing
- Driving directions
- Cheap flight tickets
- Critical paths in project management (see textbook)
- ...

SSSP: Unweighted Version

void Graph::unweighted (Vertex s){
 Queue q(NUM_VERTICES);
 Vertex v, w;
 q.enqueue(s);
 s.dist = 0;

 while (!q.isEmpty()){
 v = q.dequeue();
 for each w adjacent to v
 if (w.dist == INFINITY)
 w.dist = v.dist + 1;
 w.path = v;
 q.enqueue(w);
 }
}

Ideas?

- Each edge examined at most once – if adjacency lists are used
- Each vertex enqueued at most once

Total running time: $O(\text{ })$