Today’s Outline

• Announcements
 – Written Homework #6 due Friday 2/26 at the beginning of lecture
 – Project 3 Code due Mon March 1 by 11pm

• Today’s Topics:
 – Sorting

Why Sort?

Sorting: The Big Picture

Given \(n \) comparable elements in an array, sort them in an increasing (or decreasing) order.

<table>
<thead>
<tr>
<th>Simple algorithms: (O(n^2))</th>
<th>Fancier algorithms: (O(n \log n))</th>
<th>Comparison lower bound: (\Omega(n \log n))</th>
<th>Specialized algorithms: (O(n))</th>
<th>Handling huge data sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion sort</td>
<td>Selection sort</td>
<td>Bubble sort</td>
<td>Shell sort</td>
<td>...</td>
</tr>
</tbody>
</table>

Insertion Sort: Idea

• At the \(k \)th step, put the \(k \)th input element in the correct place among the first \(k \) elements
• Result: After the \(k \)th step, the first \(k \) elements are sorted.

\[\text{Runtime:} \]

worst case	
best case	
average case	

Selection Sort: Idea

• Find the smallest element, put it 1st
• Find the next smallest element, put it 2nd
• Find the next smallest, put it 3rd
• And so on ...
Mystery(int array a[]) {
 for (int p = 1; p < length; p++) {
 int tmp = a[p];
 for (int j = p; j > 0 && tmp < a[j-1]; j--)
 a[j] = a[j-1];
 a[j] = tmp;
 }
}

Student Activity

What sort is this?

What is its running time?
Best?
Avg?
Worst?

Selection Sort: Code

void SelectionSort (Array a[0..n-1]) {
 for (i=0, i<n; ++i) {
 j = Find index of smallest entry in a[i..n-1]
 Swap(a[i],a[j])
 }
}

Runtime:
worst case :
best case :
average case :

Divide and conquer

• A common and important technique in algorithms
 – Divide problem into parts
 – Solve parts
 – Merge solutions

Divide and Conquer Sorting

• MergeSort:
 – Divide array into two halves
 – Recursively sort left and right halves
 – Merge halves
• QuickSort:
 – Partition array into small items and large items
 – Recursively sort the two smaller portions

Merge Sort

MergeSort (Array [1..n])
1. Split Array in half
2. Recursively sort each half
3. Merge two halves together

Merge (a1[1..n], a2[1..n])
1=n, 2=n
While (i1<n, i2<n) {
 if (a1[i1] < a2[i2]) {
 Next is a1[i1]
 i1++
 } else {
 Next is a2[i2]
 i2++
 }
}

Now throw in the dregs...

“The 2-pointer method”

Merge Sort: Complexity
Auxiliary array

- The merging requires an auxiliary array

2 4 8 9 1 3 5 6

QuickSort

- Uses divide and conquer
- Doesn’t require $O(N)$ extra space like MergeSort
- Partition into left and right
 - Left less than pivot
 - Right greater than pivot
- Recursively sort left and right
- Concatenate left and right

Quick Sort

1. Pick a "pivot"
2. Divide into less-than & greater-than pivot
3. Sort each side recursively

Selecting the pivot

- Ideas?
QuickSort Example

0 1 4 2 7 3 5 9 6 8

i j

- Move i to the right to be larger than pivot.
- Move j to the left to be smaller than pivot.
- Swap

Recursive Quicksort

QuickSort(A[]): integer array, left, right: integer:
if left + CUTOFF <= right then
 pivot := median3(A, left, right);
 pivotindex := Partition(A, left, right - 1, pivot);
 QuickSort(A, left, pivotindex - 1);
 QuickSort(A, pivotindex + 1, right);
else
 Insertionsort(A, left, right);

Don't use quicksort for small arrays.
CUTOFF = 10 is reasonable.

Recurrence Relations

Write the recurrence relation for QuickSort:

- Best Case:
- Worst Case:

QuickSort: Best case complexity

QuickSort: Worst case complexity
QuickSort:
Average case complexity

Turns out to be $O(n \log n)$

See Section 7.7.5 for an idea of the proof. Don’t need to know proof details for this course.

Quicksort Complexity

• Worst case: $O(n^2)$
• Best case: $O(n \log n)$
• Average Case: $O(n \log n)$

Mergesort and massive data

• MergeSort is the basis of massive sorting
• Quicksort and Heapsort both jump all over the array, leading to expensive random disk accesses
• Mergesort scans linearly through arrays, leading to (relatively) efficient sequential disk access
• In-memory sorting of reasonable blocks can be combined with larger mergesorts
• Mergesort can leverage multiple disks

Features of Sorting Algorithms

• In-place
 – Sorted items occupy the same space as the original items. (No copying required, only $O(1)$ extra space if any.)
• Stable
 – Items in input with the same value end up in the same order as when they began.

How fast can we sort?

• Heapsort, Mergesort, and Quicksort all run in $O(N \log N)$ best case running time
• Can we do any better?
• No, if the basic action is a comparison.

Sorting Model

• Recall our basic assumption: we can only compare two elements at a time
 – we can only reduce the possible solution space by half each time we make a comparison
• Suppose you are given N elements
 – Assume no duplicates
• How many possible orderings can you get?
 – Example: a, b, c ($N = 3$)
Permutations

- How many possible orderings can you get?
 - Example: a, b, c \((N = 3) \)
 - \((a \ b \ c), (a \ c \ b), (b \ a \ c), (b \ c \ a), (c \ a \ b), (c \ b \ a)\)
 - \(6 \text{ orderings} = 3 \times 2 \times 1 = 3! \) (i.e., “3 factorial”)
 - All the possible permutations of a set of 3 elements

- For \(N\) elements
 - \(N\) choices for the first position, \((N-1)\) choices for the second position, …, \(2\) choices, \(1\) choice
 - \(N(N-1)(N-2)\ldots(2)(1) = N!\) possible orderings

Decision Tree

- \(a < b < c, \quad b < c < a, \quad c < a < b, \quad a < c < b, \quad b < a < c, \quad c < b < a\)
- The leaves contain all the possible orderings of \(a, b, c\)

Lower bound on Height

- A binary tree of height \(h\) has at most how many leaves?
 - \(L\)
- A binary tree with \(L\) leaves has height at least:
 - \(h\)
- The decision tree has how many leaves?
 - \(L\)
- So the decision tree has height:
 - \(h\)

\(\Omega(N \log N)\)

- Run time of any comparison-based sorting algorithm is \(\Omega(N \log N)\)
- Can we do better if we don’t use comparisons?

BucketSort (aka BinSort)

If all values to be sorted are known to be between \(1\) and \(K\), create an array \count\ of size \(K\), increment \count\ counts while traversing the input, and finally output the result.

Example: \(K=5\), Input = \((5,1,3,4,3,2,1,1,5,4,5)\)

Running time to sort \(n\) items?
BucketSort Complexity: $O(n+K)$

- Case 1: K is a constant
 - BinSort is linear time
- Case 2: K is variable
 - Not simply linear time
- Case 3: K is constant but large (e.g. 2^{32})
 - ???

Fixing impracticality: RadixSort

- Radix = “The base of a number system”
 - We’ll use 10 for convenience, but could be anything
- Idea: BucketSort on each digit,
 least significant to most significant (lsd to msd)

Radix Sort Example (1st pass)

Input data

<table>
<thead>
<tr>
<th>Input data</th>
</tr>
</thead>
<tbody>
<tr>
<td>478</td>
</tr>
<tr>
<td>357</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>123</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>38</td>
</tr>
<tr>
<td>721</td>
</tr>
</tbody>
</table>

Bucket sort by 1's digit

<table>
<thead>
<tr>
<th>After 1st pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>721</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>123</td>
</tr>
<tr>
<td>357</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>38</td>
</tr>
<tr>
<td>478</td>
</tr>
</tbody>
</table>

Radix Sort Example (2nd pass)

After 1st pass

<table>
<thead>
<tr>
<th>After 1st pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>721</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>123</td>
</tr>
<tr>
<td>357</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>38</td>
</tr>
<tr>
<td>478</td>
</tr>
<tr>
<td>9</td>
</tr>
</tbody>
</table>

Bucket sort by 10's digit

<table>
<thead>
<tr>
<th>After 2nd pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>721 0</td>
</tr>
<tr>
<td>3 9</td>
</tr>
<tr>
<td>123 12</td>
</tr>
<tr>
<td>357 2</td>
</tr>
<tr>
<td>9 7</td>
</tr>
<tr>
<td>38 8</td>
</tr>
<tr>
<td>478 3</td>
</tr>
</tbody>
</table>

Radix Sort Example (3rd pass)

After 2nd pass

<table>
<thead>
<tr>
<th>After 2nd pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 3</td>
</tr>
<tr>
<td>9 9</td>
</tr>
<tr>
<td>721 7</td>
</tr>
<tr>
<td>123 12</td>
</tr>
<tr>
<td>357 3</td>
</tr>
<tr>
<td>38 2</td>
</tr>
<tr>
<td>478 8</td>
</tr>
</tbody>
</table>

Bucket sort by 100's digit

<table>
<thead>
<tr>
<th>After 3rd pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 3</td>
</tr>
<tr>
<td>9 9</td>
</tr>
<tr>
<td>721 7</td>
</tr>
<tr>
<td>123 12</td>
</tr>
<tr>
<td>357 3</td>
</tr>
<tr>
<td>38 2</td>
</tr>
<tr>
<td>478 8</td>
</tr>
</tbody>
</table>

Invariant: after k passes the low order k digits are sorted.

RadixSort

- Input: 126, 328, 636, 341, 416, 131, 328

BucketSort on lsd:

- Input: 126, 328, 636, 341, 416, 131, 328
 - 0 1 2 3 4 5 6 7 8 9

BucketSort on next-higher digit:

- 0 1 2 3 4 5 6 7 8 9

BucketSort on msd:

- 0 1 2 3 4 5 6 7 8 9
Radixsort: Complexity

• How many passes?
• How much work per pass?
• Total time?
• Conclusion?

• In practice
 – RadixSort only good for large number of elements with relatively small values

Internal versus External Sorting

• Need sorting algorithms that minimize disk/tape access time

• **External sorting** – Basic Idea:
 – Load chunk of data into RAM, sort, store this “run” on disk/tape
 – Use the Merge routine from Mergesort to merge runs
 – Repeat until you have only one run (one sorted chunk)
 – Text gives some examples