Disjoint Sets Il
Chapter 8 in Weiss

CSE 326
Data Structures
Ruth Anderson

2/22/2010

Today’s Outline

¢ Announcements
— Project 3 partner selection due Mon Feb 22 by
11pm, DO NOT WAIT UNTIL THEN TO START!

— Written Homework #6 due Friday 2/26

« Today’s Topics:
— Disjoint Sets
— Sorting

2/22/2010

Weighted Union/Union by Size

» Weighted Union
— Always point thesmaller (total # of nodes) tree
to the root of the larger tree

W-Union(1,7)

2/22/2010

Example Again

© @ 6 - 0
W-Union(2,1)
@ @ e @
(5 @ W-L.Jnion(3,2)
o .
W-Union(n,2)

6% Find(1) constanttime

2/22/2010

Analysis of Weighted Union

With weighted union an up-tree of height h has
weightat least 2",

¢ Proof by induction
— Basis h = 0. The up-tree has one noder2

— Inductive step: Assume true for all h’ < h.

T W(Ty) 2 W(Ty) > 2"
Minimum weight th Welghfted Induction
up-tree of height h l union hypothesis
formed by W(T) 3 24 201 = 2n

weighted unions
2/22/2010

Analysis of Weighted Union (cont)

Let T be an up-tree of weight n formed by
weighted union. Let h be its height.
n>2n
log,n>h

» Find(x) in tree T takes O(log n) time.
— Can we do better?

2/22/2010

Worst Case for Weighted Union

n/2 Weighted Unions

$888883¢

n/4 Weighted Unions
opi o% o% op\g

2/22/2010 7

Example of Worst Cast (cont’)

After n/2 + n/4 + ...+ 1 Weighted Unions:

If there are n = 2 nodes then the longest
path from leaf to root has length k.

2/22/2010 8

Array Implementation

RIRL"
.

=N
~N |
~ (o
go

[N

1
up -1
weight | 2

2/22/2010 9

Weighted Union

WUnion(i,j : index){
/li and j are roots
w = weight[i];
W o= weight[j];
if ww <w then
upli] ==j: -
wei ght[j] ©=w + W neyruntimefor Union():
el se
up[j] :=i;
wei ght[i] = w +w;

new runtime for Find():
runtime for mfinds and n-1 unions =

2/22/2010 10

Nifty Storage Trick

» Use the same array representation as beforg
* Instead of storing1 for the root,

simply store-size

[Read section 8.4, page 276]

2/22/2010 n

How about Union-by-height

* Can still guarantee O(lag) worst case
depth

Left as an exercise!

« Problem: Union-by-height doesn’t combine very
well with the new find optimization technique
we’'ll see next

2/22/2010 12

Path Compression

« On a Find operation point all the nodes on the
search path directly to the root.

b g e
@{@ ®

2/22/2010 13

Draw the result of Find(e):

Self-Adjustment Works

v

| V] VVVIN
PC-Find(x) 1\ \

x

ALY
(4444444

2/22/2010 16

Path Compression Find

PC-Find(i : index) {
roi=i;
while up[r] # -1 do //find root//
roo=up[rl;
if i #r then //conpress path//
k o= up[i];
while k #r do
up[i] :=r;
=k
k = up[k]
return(r)

}

2/22/2010 7

Path Compression: Code

/I Change the parent for
int Find(Object x){ l :-Ill node?sl?loj[lg the path
Il x had better be in while(up[i] =)_{.
Il the set! tem.p: UPFI],
int xID = hTable[x]; _“f['] = Xlle
int i =xID; i=temp;
}
I Get the root for return xID;
11 this set }
while(up[xID] != -1)
{
) XD = up[IDL (New?) runtime for Find:
212212010 18

Interlude: A Really Slow Function

Ackermann'’s function is a_reallybig function A, y)
with inversea(x, y) which is_reallysmall

How fast doesi(x, y) grow?

a(x,y) = 4 forx far larger than the number of atoms
in the universe @9

o shows up in:
— Computation Geometry (surface complexity)
— Combinatorics of sequences

2/22/2010 19

A More Comprehensible Slow Function

log* x = number of times you need to compute
log to bring value down to at most 1

E.g.logr2=1
log* 4 =log* 2= 2
log* 16 = log* 2= 3 (log log log 16 = 1)
log* 65536 = log* 22-4 (log log log log 65536 = 1)
log* 265536==5

Take this:a(m,n) grows even slower than log* !!
2/22/2010 20

Disjoint Union / Find
with Weighted Union and PC

* Worst case time complexity for a W-Union is O(1)
and for a PC-Find is O(log n).

« Time complexity for n= n operations on n
elements is O(m log* n) where log* n is a very
slow growing function.

— Log * n < 7 for all reasonable n. Essentially dans
time per operation!

« Using “ranked union” gives an even better bound
theoretically.

2/22/2010 2

Complex Complexity of
Union-by-Size + Path Compression

Tarjan proved that, with these optimizatiopsinion and
find operations on a set nfelements have worst case
complexity ofO(p Ct(p, n))

Forall practical purposesthis is amortized constant time:
O(p 4) for p operations!

» Very complex analysis — worse than splay tree aigly
etc. that we skipped!

2/22/2010 21

Amortized Complexity

* For disjoint union / find with weighted
union and path compression.

— average time per operation is essentially a
constant.

— worst case time for a PC-Find is O(log n).
» An individual operation can be costly, but

over time the average cost per operation is
not.

2/22/2010 23

