
2/17/2010 1

Disjoint Sets I
Chapter 8 in Weiss

CSE 326
Data Structures
Ruth Anderson

2/17/2010 2

Today’s Outline

• Announcements
– Project 3 partner selection due Mon Feb 22 by

11pm, DO NOT WAIT UNTIL THEN TO START!
– Written Homework #5 due Friday 2/19

• Today’s Topics:
– Hash Tables
– Disjoint Sets

2/17/2010 3

Motivation
Some kinds of data analysis require keeping track of

transitive relations.
Equivalence relations are one family of transitive

relations.
Grouping pixels of an image into colored regions is

one form of data analysis that uses “dynamic
equivalence relations”.

Creating mazes without cycles is another application.
Later we’ll learn about “minimum spanning trees”

for networks, and how the dynamic equivalence
relations help out in computing spanning trees.

2/17/2010 4

Disjoint Sets

• Two sets S1 and S2 are disjoint if and only if they
have no elements in common.

• S1 and S2 are disjoint iff S1 ∩ S2 = ∅

For example {a, b, c} and {d, e} are disjoint.

But {x, y, z} and {t, u, x} are not disjoint.

(the intersection of the two sets is the empty set)

2/17/2010 5

Equivalence Relations

• A binary relation R on a set S is an equivalence relation
provided it is reflexive, symmetric, and transitive:

• Reflexive - R(a,a) for all a in S.
• Symmetric - R(a,b) → R(b,a)
• Transitive - R(a,b) ∧ R(b,c) → R(a,c)

Is ≤ an equivalence relation on integers?
Is “is connected by roads” an equivalence relation on

cities?

2/17/2010 6

Induced Equivalence Relations

• Let S be a set, and let P be a partition of S.

P = { S1, S2, . . . , Sk }

P being a partition of S means that:
i ≠ j → Si ∩ Sj = ∅ and

S1 ∪ S2 ∪ . . . ∪ Sk = S

• P induces an equivalence relation R on S:

R(a,b) provided a and b are in the same subset(same
element of P).

So given any partition P of a set S, there is a corresponding
equivalence relation R on S.

2/17/2010 7

Example
• S = {a, b, c, d, e}

P = { S1, S2, S3 }

S1 = {a, b, c}, S2 = {d}, S3 = {e}

P being a partition of S means that:
i ≠ j → Si ∩ Sj = ∅ and

S1 ∪ S2 ∪ . . . ∪ Sk = S

• P induces an equivalence relation R on S:

R = { (a,a), (b,b), (c,c), (a,b), (b,a), (a,c), (c,a),
(b,c), (c,b),

(d,d),

(e,e) }

2/17/2010 8

Introducing the UNION-FIND ADT

• Also known as the Disjoint Sets ADT or the Dynamic
Equivalence ADT.

• There will be a set S of elements that does not change.

• We will start with a partition P0, but we will modify it
over time by combining sets.

• The combining operation is called “UNION”

• Determining which set (of the current partition) an
element of S belongs to is called the “FIND” operation.

2/17/2010 9

Example

• Maintain a set of pairwise disjoint* sets.
– {3,5,7}, {4,2,8}, {9}, {1,6}

• Each set has a unique name: one of its
members
– {3,5,7}, {4,2,8}, { 9}, { 1,6}

*Pairwise Disjoint: For any two sets you pick, their intersection
will be empty)

2/17/2010 10

Union

• Union(x,y) – take the union of two sets
named x and y
– {3,5,7} , {4,2,8}, { 9}, { 1,6}

– Union(5,1)

{3,5,7,1,6}, {4,2,8}, { 9},

To perform the union operation, we replace sets x
and y by (x ∪ y)

2/17/2010 11

Find

• Find(x) – return the name of the set
containing x.
– {3,5,7,1,6}, {4,2,8}, { 9},

– Find(1) = 5

– Find(4) = 8

2/17/2010 12

Application: Building Mazes

• Build a random maze by erasing edges.

2/17/2010 13

Building Mazes (2)

• Pick Start and End

Start

End

2/17/2010 14

Building Mazes (3)

• Repeatedly pick random edges to delete.

Start

End

2/17/2010 15

Desired Properties

• None of the boundary is deleted

• Every cell is reachable from every other
cell.

• Only one path from any one cell to another
(There are no cycles – no cell can reach
itself by a path unless it retraces some part
of the path.)

2/17/2010 16

A Cycle

Start

End

2/17/2010 17

A Good Solution

Start

End

2/17/2010 18

A Hidden Tree

Start

End

2/17/2010 19

Number the Cells

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

We have disjoint sets P ={ {1}, {2}, {3}, {4},… {36} } each cell is unto itself.
We have all possible edges E ={ (1,2), (1,7), (2,8), (2,3), … } 60 edges total.

2/17/2010 20

Algorithm - idea

1. Choose wall at random.
→ Boundary walls are not in wall list,
because we cannot delete them

2. Erase wall if the neighbors are in disjoint sets.
→ Avoids cycles

3. Take union of those sets.
4. Repeat until there is only one set.

→ Every cell reachable from every other cell.

2/17/2010 21

We want to check if two nodes x and y are
in the same set.

How can I do this using unions and finds?

Activity

Basic Algorithm
• P = set of sets of connected cells
• E = set of edges
• Maze= set of maze edges (initially empty)

While there is more than one set in P {
pick a random edge (x,y) and remove from E
u := Find(x);
v := Find(y);
if u ≠ v then // removing edge (x,y) connects previously non-

// connected cells x and y - leave this edge removed!
Union(u,v)

else // cells x and y were already connected, add this
// edge to set of edges that will make up final maze.

add (x,y) to Maze
}
All remaining members of E together with Mazeform the maze

2/17/2010 23

Example Step

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

P
{1,2,7,8,9,13,19}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{14,20,26,27}
{15,16,21}
.
.
{22,23,24,29,30,32
33,34,35,36}

Pick (8,14)

Activity
2/17/2010 24

Example
P
{1,2,7,8,9,13,19}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{14,20,26,27}
{15,16,21}
.
.
{22,23,24,29,39,32
33,34,35,36}

Find(8) = 7
Find(14) = 20

P
{1,2,7,8,9,13,19,14,20 26,27}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{15,16,21}
.
.
{22,23,24,29,39,32
33,34,35,36}

Union(7,20)

2/17/2010 25

Example

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

P
{1,2,7,8,9,13,19

14,20,26,27}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{15,16,21}
.
.
{22,23,24,29,39,32
33,34,35,36}

Pick (19,20)

2/17/2010 26

Example at the End

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

P
{1,2,3,4,5,6,7,… 36}

E (remaining walls)
Maze (Checked
and added to Maze)

2/17/2010 27

Implementing the DS ADT
• n elements,

Total Cost of:m finds, ≤ n-1 unions

• Target complexity: O(m+n)
i.e. O(1) amortized

• O(1) worst-case for find as well as union
would be great, but…

Known result: both find and union cannot
be done in worst-case O(1) time

can there be
more unions?

2/17/2010 28

Data Structure for the DS ADT

2/17/2010 30

Up-Tree for Disjoint Union/Find

1 2 3 4 5 6 7Initial state:

1

2

3

45

6

7After several
Unions:

Roots are the names of each set.

2/17/2010 31

Find Operation

Find(x) - follow x to the root and return the root

1

2

3

45

6

7

Find(6) = 7

2/17/2010 32

Union Operation

Union(x,y) - assuming x and y are roots, point y to x.

1

2

3

45

6

7

Union(1,7)

2/17/2010 33

Simple Implementation

• Array of indices

1

2

3

45

6

7

0 1 0 7 7 5 0

1 2 3 4 5 6 7

up

Up[x] = 0 means
x is a root.

2/17/2010 34

Implementation

int Find(int x) {

while(up[x] != 0) {

x = up[x];

}

return x;

}

void Union(int x, int y) {

up[y] = x;

}

runtime for Union():

runtime for Find():

runtime for m Finds and n-1 Unions:
2/17/2010 3535

A Bad Case

1 2 3 n…

1

2 3 n

Union(2,1)

1

2

3 n

Union(3,2)

Union(n,n-1)

…

…

1

2

3

n

:
:

Find(1) n steps!!

2/17/2010 36

Find Solutions

Find(up[] : integer array, x : integer) : integer {
//precondition: x is in the range 1 to size//

if up[x] = 0 then return x
else return Find(up,up[x]);

}

Find(up[] : integer array, x : integer) : integer {
//precondition: x is in the range 1 to size//

while up[x] ≠ 0 do
x := up[x];

return x;
}

Recursive

Iterative

2/17/2010 37

Now this doesn’t look good �
Can we do better? Yes!

1. Improve unionso that find only takes Θ(log n)
• Union-by-size
• Reduces complexity to Θ(m log n + n)

2. Improve find so that it becomes even better!
• Path compression
• Reduces complexity to almostΘ(m + n)

