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Disjoint Sets I
Chapter 8 in Weiss

CSE 326
Data Structures
Ruth Anderson
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Today’s Outline

• Announcements
– Project 3 partner selection due Mon Feb 22 by 

11pm, DO NOT WAIT UNTIL THEN TO START!
– Written Homework #5 due Friday 2/19

• Today’s Topics: 
– Hash Tables
– Disjoint Sets
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Motivation
Some kinds of data analysis require keeping track of 

transitive relations.  
Equivalence relations are one family of transitive 

relations.
Grouping pixels of an image into colored regions is 

one form of data analysis that uses “dynamic 
equivalence relations”.

Creating mazes without cycles is another application.
Later we’ll learn about “minimum spanning trees”

for networks, and how the dynamic equivalence 
relations help out in computing spanning trees.
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Disjoint Sets

• Two sets S1 and S2 are disjoint if and only if they 
have no elements in common.

• S1 and S2 are disjoint iff S1 ∩ S2 = ∅

For example {a, b, c} and {d, e} are disjoint.

But {x, y, z} and {t, u, x}  are not disjoint.

(the intersection of the two sets is the empty set)
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Equivalence Relations

• A binary relation R on a set S is an equivalence relation
provided it is reflexive, symmetric, and transitive:

• Reflexive - R(a,a) for all a in S.
• Symmetric - R(a,b) → R(b,a)
• Transitive - R(a,b) ∧ R(b,c) → R(a,c)

Is ≤ an equivalence relation on integers?
Is “is connected by roads” an equivalence relation on 

cities?
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Induced Equivalence Relations

• Let S be a set, and let P be a partition of S.

P = { S1, S2, . . . , Sk }

P being a partition of S means that:
i ≠ j → Si ∩ Sj = ∅ and

S1 ∪ S2 ∪ . . . ∪ Sk = S

• P induces an equivalence relation R on S:

R(a,b) provided a and b are in the same subset(same 
element of P).

So given any partition P of a set S, there is a corresponding 
equivalence relation R on S.
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Example
• S = {a, b, c, d, e}

P = { S1, S2, S3 }

S1 = {a, b, c}, S2 = {d}, S3 = {e}

P being a partition of S means that:
i ≠ j → Si ∩ Sj = ∅ and

S1 ∪ S2 ∪ . . . ∪ Sk = S

• P induces an equivalence relation R on S:

R = { (a,a), (b,b), (c,c), (a,b), (b,a), (a,c), (c,a), 
(b,c), (c,b),

(d,d),

(e,e) }
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Introducing the UNION-FIND ADT

• Also known as the Disjoint Sets ADT or the Dynamic 
Equivalence ADT.

• There will be a set S of elements that does not change.

• We will start with a partition P0, but we will modify it 
over time by combining sets.

• The combining operation is called “UNION”

• Determining which set (of the current partition) an 
element of S belongs to is called the “FIND” operation.
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Example

• Maintain a set of pairwise disjoint* sets.
– {3,5,7}, {4,2,8}, {9}, {1,6}

• Each set has a unique name: one of its 
members
– {3,5,7}, {4,2,8}, { 9}, { 1,6}

*Pairwise Disjoint: For any two sets you pick, their intersection
will be empty) 
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Union

• Union(x,y) – take the union of two sets 
named x and y
– {3,5,7} , {4,2,8}, { 9}, { 1,6}

– Union(5,1)

{3,5,7,1,6}, {4,2,8}, { 9}, 

To perform the union operation, we replace sets x 
and y by  (x ∪ y)
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Find

• Find(x) – return the name of the set 
containing x.
– {3,5,7,1,6}, {4,2,8}, { 9}, 

– Find(1) = 5

– Find(4) = 8
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Application: Building Mazes

• Build a  random maze by erasing edges.
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Building Mazes (2)

• Pick Start and End

Start

End
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Building Mazes (3)

• Repeatedly pick random edges to delete.

Start

End
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Desired Properties

• None of the boundary is deleted

• Every cell is reachable from every other 
cell.

• Only one path from any one cell to another 
(There are no cycles – no cell can reach 
itself by a path unless it retraces some part 
of the path.)
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A Cycle

Start

End
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A Good Solution

Start

End
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A Hidden Tree

Start

End
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Number the Cells

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

We have disjoint sets P ={ {1}, {2}, {3}, {4},… {36} }  each cell is unto itself.
We have all possible edges E ={ (1,2), (1,7), (2,8), (2,3), … } 60 edges total.
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Algorithm - idea

1. Choose wall at random.
→ Boundary walls are not in wall list,
because we cannot delete them

2. Erase wall if the neighbors are in disjoint sets.
→ Avoids cycles

3. Take union of those sets.
4. Repeat until there is only one set.

→ Every cell reachable from every other cell.
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We want to check if two nodes x and y are 
in the same set.  

How can I do this using unions and finds?

Activity

Basic Algorithm
• P = set of sets of connected cells
• E = set of edges
• Maze= set of maze edges (initially empty)

While there is more than one set in P {
pick a random edge (x,y) and remove from E
u := Find(x);
v := Find(y);
if u  ≠ v then // removing edge (x,y) connects previously non-

// connected cells x and y - leave this edge removed!
Union(u,v)

else // cells x and y were already connected, add this 
// edge to set of edges that will make up final maze.

add (x,y) to Maze
}
All remaining members of E together with Mazeform the maze
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Example Step

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

P
{1,2,7,8,9,13,19}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{14,20,26,27}
{15,16,21}
.
.
{22,23,24,29,30,32
33,34,35,36}

Pick (8,14)

Activity
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Example
P
{1,2,7,8,9,13,19}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{14,20,26,27}
{15,16,21}
.
.
{22,23,24,29,39,32
33,34,35,36}

Find(8) = 7
Find(14) = 20

P
{1,2,7,8,9,13,19,14,20 26,27}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{15,16,21}
.
.
{22,23,24,29,39,32
33,34,35,36}

Union(7,20)
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Example

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

P
{1,2,7,8,9,13,19

14,20,26,27}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{15,16,21}
.
.
{22,23,24,29,39,32
33,34,35,36}

Pick (19,20)

2/17/2010 26

Example at the End

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

P
{1,2,3,4,5,6,7,… 36}

E (remaining walls)
Maze (Checked
and added to Maze)
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Implementing the DS ADT
• n elements, 

Total Cost of:m finds, ≤ n-1 unions

• Target complexity: O(m+n)
i.e. O(1) amortized

• O(1) worst-case for find as well as union 
would be great, but…

Known result: both find and union cannot
be done in worst-case O(1) time

can there be
more unions?
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Data Structure for the DS ADT
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Up-Tree for Disjoint Union/Find

1 2 3 4 5 6 7Initial state:

1

2

3

45

6

7After several
Unions:

Roots are the names of each set.
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Find Operation

Find(x) - follow x to the root and return the root

1

2

3

45

6

7

Find(6) = 7
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Union Operation

Union(x,y) - assuming x and y are roots, point y to x.

1

2

3

45

6

7

Union(1,7)
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Simple Implementation

• Array of indices

1

2

3

45

6

7

0 1 0 7 7 5 0

1   2    3    4   5    6   7

up

Up[x] = 0 means
x is a root.

2/17/2010 34

Implementation

int Find(int x) {

while(up[x] != 0) {

x = up[x];

}

return x;

}

void Union(int x, int y) {

up[y] = x;

}

runtime for Union():

runtime for Find():

runtime for m Finds and n-1 Unions:
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A Bad Case

1 2 3 n…

1

2 3 n

Union(2,1)

1

2

3 n

Union(3,2)

Union(n,n-1)

…

…

1

2

3

n

:
:

Find(1)   n steps!!
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Find Solutions

Find(up[] : integer array, x : integer) : integer {
//precondition: x is in the range 1 to size//

if up[x] = 0 then return x
else return Find(up,up[x]);

}

Find(up[] : integer array, x : integer) : integer {
//precondition: x is in the range 1 to size//

while up[x] ≠ 0 do
x := up[x];

return x;
}

Recursive

Iterative
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Now this doesn’t look good �
Can we do better?     Yes!

1. Improve unionso that find only takes Θ(log n)
• Union-by-size
• Reduces complexity to Θ(m log n + n)

2. Improve find so that it becomes even better!
• Path compression
• Reduces complexity to almostΘ(m + n)


