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Hash Tables

Chapter 5 in Weiss

CSE 326
Data Structures
Ruth Anderson
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Today’s Outline

• Announcements
– Project 2B due Wednesday, 2/10 at 11pm
– Midterms returned and discussed in section Thurs
– Written Homework #4 due Friday 2/12

• Today’s Topics: 
– Hash Tables
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B-Tree with M = 4

and L = 4

Perform Insert(34)
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(Only showing keys, but leaves also have data!) 2/10/2010 44

Information Retrieval
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Implementations So Far

Student Activity
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Hash Tables

• Constant time accesses!

• A hash tableis an array of some 
fixed size, usually a prime number.

• General idea:

key space (e.g., integers, strings) TableSize –1 

hash function:
h(K)

hash table
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Example

• key space = integers

• TableSize = 10

• h(K) = K mod 10

• Insert: 7, 18, 41, 94
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Another Example

• key space = integers

• TableSize = 6

• h(K) = K mod 6

• Insert: 7, 18, 41, 34, 32

Student Activity
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Hash Functions

1. simple/fastto compute,

2. Avoid collisions
3. have keys distributed evenlyamong cells

Perfect Hash function:
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Sample Hash Functions:

• key space = strings

• s = s0 s1 s2 … s k-1

1. h(s) = s0 mod TableSize

2. h(s) = mod TableSize

3. h(s) = mod TableSize
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Designing a Hash Function for web URLs

s = s0 s1 s2 … s k-1

Issues to take into account:

h(s) =
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Collision Resolution

Collision: when two keys map to the same 
location in the hash table.  

Two ways to resolve collisions:

1. Separate Chaining

2. Open Addressing (linear probing, 
quadratic probing, double hashing)
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Separate Chaining

• Separate chaining: 
All keys that map to 
the same hash value 
are kept in a list (or 
“bucket”).

Insert:
10
22
107
12
42
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Analysis of find

• Defn: The load factor,λ, of a hash table is 
the ratio:         ← no. of elements

← table size

For separate chaining, λ = average # of 
elements in a bucket

• unsuccessful:

• successful:

M

N
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How big should the hash table be?

• For Separate Chaining: 
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tableSize: Why Prime?

• Suppose
– data stored in hash table: 7160, 493, 60, 55, 321, 

900, 810

– tableSize = 10

data hashes to 0, 3, 0, 5, 1, 0, 0

– tableSize = 11

data hashes to 10, 9, 5, 0, 2, 9, 7

Real-life data tends 
to have a pattern

Being a multiple of 
11 is usually not the 
pattern ☺
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Open Addressing
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Insert:
38
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• Linear Probing: 
after checking spot 
h(k), try spot 
h(k)+1, if that is 
full, try h(k)+2, 
then h(k)+3, etc.
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Terminology Alert!

“Open Hashing”

equals

“Separate Chaining”

“Closed Hashing”

equals

“Open Addressing”Weiss
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Linear Probing

f(i) = i

• Probe sequence:
0th probe =  h(k) mod TableSize

1th probe = (h(k) + 1) mod TableSize

2th probe = (h(k) + 2) mod TableSize

. . .

ith probe = (h(k) + i) mod TableSize
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Linear Probing – Clustering 

[R. Sedgewick]

no collision

no collision
collision in small cluster

collision in large cluster
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Load Factor in Linear Probing
• For any λ < 1, linear probing will find an empty slot

• Expected # of probes (for large table sizes)
– successful search:

– unsuccessful search:

• Linear probing suffers from primary clustering

• Performance quickly degrades for λ > 1/2
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Quadratic Probing

f(i) = i2

• Probe sequence:
0th probe =  h(k) mod TableSize
1th probe = (h(k) + 1) mod TableSize
2th probe = (h(k) + 4) mod TableSize
3th probe = (h(k) + 9) mod TableSize
. . .
ith probe = (h(k) + i2) mod TableSize

Less likely 
to encounter 
Primary 
Clustering
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Quadratic Probing
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Quadratic Probing:
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• h(k) = k mod 7
• Perform these 

inserts:
– Insert(65)

– Insert(10)

– Insert(47)


