
2/10/2010 1

Hash Tables

Chapter 5 in Weiss

CSE 326
Data Structures
Ruth Anderson

2/10/2010 2

Today’s Outline

• Announcements
– Project 2B due Wednesday, 2/10 at 11pm
– Midterms returned and discussed in section Thurs
– Written Homework #4 due Friday 2/12

• Today’s Topics:
– Hash Tables

2/10/2010 33

B-Tree with M = 4

and L = 4

Perform Insert(34)

1 2
3 5 6 9

101112
1517

202526
30323336

4042
506070

1040

3 152030 50

(Only showing keys, but leaves also have data!) 2/10/2010 44

Information Retrieval

2/10/2010 55

Implementations So Far

Student Activity
2/10/2010 66

Hash Tables

• Constant time accesses!

• A hash tableis an array of some
fixed size, usually a prime number.

• General idea:

key space (e.g., integers, strings) TableSize –1

hash function:
h(K)

hash table

2/10/2010 77

Example

• key space = integers

• TableSize = 10

• h(K) = K mod 10

• Insert: 7, 18, 41, 94

2/10/2010 88

Another Example

• key space = integers

• TableSize = 6

• h(K) = K mod 6

• Insert: 7, 18, 41, 34, 32

Student Activity

2/10/2010 99

Hash Functions

1. simple/fastto compute,

2. Avoid collisions
3. have keys distributed evenlyamong cells

Perfect Hash function:

2/10/2010 1010

Sample Hash Functions:

• key space = strings

• s = s0 s1 s2 … s k-1

1. h(s) = s0 mod TableSize

2. h(s) = mod TableSize

3. h(s) = mod TableSize









∑

−

=

1

0

k

i
is








 ⋅∑
−

=

1

0

37
k

i

i
is

2/10/2010 11

Designing a Hash Function for web URLs

s = s0 s1 s2 … s k-1

Issues to take into account:

h(s) =

2/10/2010 1212

Collision Resolution

Collision: when two keys map to the same
location in the hash table.

Two ways to resolve collisions:

1. Separate Chaining

2. Open Addressing (linear probing,
quadratic probing, double hashing)

2/10/2010 1313

Separate Chaining

• Separate chaining:
All keys that map to
the same hash value
are kept in a list (or
“bucket”).

Insert:
10
22
107
12
42

2/10/2010 1414

Analysis of find

• Defn: The load factor,λ, of a hash table is
the ratio: ← no. of elements

← table size

For separate chaining, λ = average # of
elements in a bucket

• unsuccessful:

• successful:

M

N

2/10/2010 1515

How big should the hash table be?

• For Separate Chaining:

2/10/2010 16

tableSize: Why Prime?

• Suppose
– data stored in hash table: 7160, 493, 60, 55, 321,

900, 810

– tableSize = 10

data hashes to 0, 3, 0, 5, 1, 0, 0

– tableSize = 11

data hashes to 10, 9, 5, 0, 2, 9, 7

Real-life data tends
to have a pattern

Being a multiple of
11 is usually not the
pattern ☺

2/10/2010 17

Open Addressing

2

3

9

8

7

6

5

4

1

0

Insert:
38
19
8
109
10

• Linear Probing:
after checking spot
h(k), try spot
h(k)+1, if that is
full, try h(k)+2,
then h(k)+3, etc.

2/10/2010 18

Terminology Alert!

“Open Hashing”

equals

“Separate Chaining”

“Closed Hashing”

equals

“Open Addressing”Weiss

2/10/2010 19

Linear Probing

f(i) = i

• Probe sequence:
0th probe = h(k) mod TableSize

1th probe = (h(k) + 1) mod TableSize

2th probe = (h(k) + 2) mod TableSize

. . .

ith probe = (h(k) + i) mod TableSize
2/10/2010 20

Linear Probing – Clustering

[R. Sedgewick]

no collision

no collision
collision in small cluster

collision in large cluster

2/10/2010 21

Load Factor in Linear Probing
• For any λ < 1, linear probing will find an empty slot

• Expected # of probes (for large table sizes)
– successful search:

– unsuccessful search:

• Linear probing suffers from primary clustering

• Performance quickly degrades for λ > 1/2

() 








−
+ 21

1
1

2

1

λ

()







−
+

λ1

1
1

2

1

2/10/2010 22

Quadratic Probing

f(i) = i2

• Probe sequence:
0th probe = h(k) mod TableSize
1th probe = (h(k) + 1) mod TableSize
2th probe = (h(k) + 4) mod TableSize
3th probe = (h(k) + 9) mod TableSize
. . .
ith probe = (h(k) + i2) mod TableSize

Less likely
to encounter
Primary
Clustering

2/10/2010 23

Quadratic Probing

2

3

9

8

7

6

5

4

1

0 Insert:
89
18
49
58
79

2/10/2010 2424

Quadratic Probing:

0

1

2

3

4

5

6 76

40

93

• h(k) = k mod 7
• Perform these

inserts:
– Insert(65)

– Insert(10)

– Insert(47)

