Today’s Outline

• Announcements
 – Midterm, Friday 2/5
 – Project 2B due Wednesday, 2/10
 – Written Homework #4 due Friday 2/12

• Today’s Topics:
 – Memory Hierarchy
 – Review

Why do we need to know about the memory hierarchy/locality?

• One of the assumptions that Big-Oh makes is that all operations take the same amount of time.
• Is that really true?

Definitions

Cycle – (for our purposes) the time it takes to execute a single simple instruction. (ex. Add 2 registers together)

Memory Latency – time it takes to access memory

Moore’s Law

Time to access:

- CPU (has registers): 1 ns per instruction
- Cache: 2-10 ns
- Main Memory: 40-100 ns
- Disk: a few milliseconds (5-10 Million ns)
Processor-Memory Performance Gap

- x86 CPU speed (100x over 10 years)

What can be done?

- **Goal**: Attempt to reduce the number of accesses to the slower levels.
- **How**?

Localisation

Temporal Locality (locality in time) – If an item is referenced, it will tend to be referenced again soon.

Spatial Locality (locality in space) – If an item is referenced, items whose addresses are close by will tend to be referenced soon.

Caches

- Each level is a **sub-set** of the level below.

 - **Cache Hit** – address requested is in cache
 - **Cache Miss** – address requested is NOT in cache

 Cache line size (chunk size) – the number of contiguous bytes that are moved into the cache at one time

Examples

- \(x = a + 6; \)
- \(y = a + 5; \)
- \(z = 8 * a; \)
- \(x = a[0] + 6; \)
- \(y = a[1] + 5; \)
- \(z = 8 * a[2]; \)

Locality and Data Structures

- Which has (at least the potential for) better spatial locality, arrays or linked lists?
<table>
<thead>
<tr>
<th>Student Activity</th>
<th>Comparing Priority Queues</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Binary Heaps</td>
<td>• Leftist Heaps</td>
</tr>
<tr>
<td>• d-Heaps</td>
<td>• Skew Heaps</td>
</tr>
</tbody>
</table>

Binomial Queues:

2010/2010