Today’s Outline

- Announcements
 - Written HW #3 due NOW
 - Project 2A due Monday, 2/1
 - Midterm, next Friday 2/5

- Today’s Topics:
 - Dictionary ADT
 - AVL Trees
 - Splay Trees

Other Possibilities?

- Could use different balance conditions, different ways to maintain balance, different guarantees on running time, …
- Why aren’t AVL trees perfect?
- Many other balanced BST data structures
 - Red-Black trees
 - AA trees
 - Splay Trees
 - 2-3 Trees
 - B-Trees

Splay Trees

- Blind adjusting version of AVL trees
 - Why worry about balances? Just rotate anyway!
- Amortized time per operation is $O(\log n)$
- Worst case time per operation is $O(n)$
 - But guaranteed to happen rarely

Insert/Find always rotate node to the root!

SAT/GRE Analogy question:
AVL is to Splay trees as _______ is to _______

Recall: Amortized Complexity

If a sequence of M operations takes $O(M f(n))$ time, we say the amortized runtime is $O(f(n))$.

- Worst case time per operation can still be large, say $O(n)$
- Worst case time for any sequence of M operations is $O(M f(n))$

Average time per operation for any sequence is $O(f(n))$

Amortized complexity is worst-case guarantee over sequences of operations.
The Splay Tree Idea

If you’re forced to make a really deep access:
Since you’re down there anyway, fix up a lot of deep nodes!

Find/Insert in Splay Trees

1. Find or insert a node k
2. Splay k to the root using:
 zig-zag, zig-zig, or plain old zig rotation

Why could this be good??
1. Helps the new root, k
 o Great if k is accessed again
2. And helps many others!
 o Great if many others on the path are accessed

Splaying node k to the root: Need to be careful!
One option (that we won’t use) is to repeatedly use AVL single rotation until k becomes the root: (see Section 4.5.1 for details)
What’s bad about this process?

Splay: Zig-Zag*

Just like an…
Which nodes improve depth?

Splay: Zig-Zig*

*Is this just two AVL single rotations in a row?

Special Case for Root: Zig

Relative depth of p, Y, Z?
Relative depth of everyone else?

Why not drop zig-zig and just zig all the way?
Insert 6, 5, 4, 3, 2, 1

• Cost of each insert? \(O(\quad) \)

Splaying Example: Find(6)

Still Splaying 6

Finally…

Another Splay: Find(4)

Example Splayed Out
But Wait…

What happened here?

Didn’t two find operations take linear time instead of logarithmic?

What about the amortized $O(\log n)$ guarantee?

Why Splaying Helps

• If a node n on the access path is at depth d before the splay, it’s at about depth $d/2$ after the splay

• Overall, nodes which are low on the access path tend to move closer to the root

• Splaying gets amortized $O(\log n)$ performance.
 (Maybe not now, but soon, and for the rest of the operations.)

Practical Benefit of Splaying

• No heights to maintain, no imbalance to check for
 – Less storage per node, easier to code

• Often data that is accessed once, is soon accessed again!
 – Splaying does implicit caching by bringing it to the root

• Often related data is accessed in sequence
 – Helps node AND its children

Splay Operations: Find

• Find the node in normal BST manner
• Splay the node to the root
 – if node not found, splay what would have been its parent

What if we didn’t splay?

Splay Operations: Insert

• Insert the node in normal BST manner
• Splay the node to the root

What if we didn’t splay?
Splay D

Splay E

Splay E

Splay Operations: Remove

Join

Join(L, R):
given two trees such that (stuff in L) < (stuff in R), merge them:

Splay on the maximum element in L, then attach R

Delete Example

Delete(4)
Splay Tree Summary

- All operations are in amortized $O(\log n)$ time

- Splaying can be done top-down; this may be better because:
 - only one pass
 - no recursion or parent pointers necessary
 - we didn’t cover top-down in class

- Splay trees are very effective search trees
 - Relatively simple
 - No extra fields required
 - Excellent locality properties: frequently accessed keys are cheap to find